Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
6 (2019) Trang: 255–273
Tạp chí: Intl Conf. on Future Data and Security Engineering 2019 (FDSE 2019)

In recent years, gene expression data combined with machine learning methods revolutionized cancer classification which had been based solely on morphological appearance. However, the characteristics of gene expression data have very-high-dimensional and small-sample-size which lead to over-fitting of classification algorithms. We propose a novel gene expression classification model of multiple classifying algorithms with synthetic minority oversampling technique (SMOTE) using features extracted by deep convolutional neural network (DCNN). In our approach, the DCNN extracts latent features of gene expression data, then the SMOTE algorithm generates new data from the features of DCNN was implemented. These models are used in conjunction with classifiers that efficiently classify gene expression data. Numerical test results on fifty very-high-dimensional and small-sample-size gene expression datasets from the Kent Ridge Biomedical and Array Expression repositories illustrate that the proposed algorithm is more accurate than state-of-the-art classifying models and improve the accuracy of classifiers including non-linear support vector machines (SVM), linear SVM, k nearest neighbors and random forests.

Các bài báo khác
Số Công nghệ TT 2015 (2015) Trang: 9-16
Tải về
17 (2019) Trang: 14-20
Tạp chí: Journal of information and communication convergence engineering
 


Vietnamese | English






 
 
Vui lòng chờ...