Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
1 (2015) Trang:
Tạp chí: International Conference on Document Analysis and Recognition (ICDAR’2015)
Liên kết:

Document image segmentation is crucial to OCR and other digitization processes. In this paper, we present a learning-based approach for text and non-text separation in document images. The training features are extracted at the level of connected components, a mid-level between the slow noise-sensitive pixel level, and the segmentation-dependent zone level. Given all types, shapes and sizes of connected components, we extract a powerful set of features based on size, shape, stroke width and position of each connected component. Adaboosting with Decision trees is used for labeling connected components. Finally, the classification of connected components into text and non-text is corrected based on classification probabilities and size as well as stroke width analysis of the nearest neighbors of a connected component. The performance of our approach has been evaluated on the two standard datasets: UW-III and ICDAR-2009 competition for document layout analysis. Our results demonstrate that the proposed approach achieves competitive performance for segmenting text and non-text in document images of variable content and degradation.

Các bài báo khác
1 (2015) Trang:
Tạp chí: THE FIFTH SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY
22 (2014) Trang: 3056-3061
Tạp chí: the 22nd International Conference on Pattern Recognition, Stockholm, 24-28 August 2014,
 


Vietnamese | English






 
 
Vui lòng chờ...