The quest for accurate traffic density estimation is gaining momentum globally, with Vietnam distinguished by its ranking among the top ten nations for private vehicle usage. Rapid advancements in computer vision, particularly through the development of convolutional neural network (CNN) methodologies, underscore the pressing need to incorporate these techniques into traffic density estimation efforts. In this study, three convolutional neural network (CNN) mod- els—W-Net, UASD-Net (a fusion of U-Net with Adaptive Scenario Discovery), and CSR-Net (Congested Scene Recognition Network)—are employed to quan- tify and assess traffic density based on images captured in Vietnam. Furthermore, a novel approach for reallocating label points to generate more accurate density maps is proposed. Experimental results on a composite dataset, integrating the TRANCOS, TayDo, and KienGiang datasets, demonstrate promising mean ab- solute error rates of 3.67, 4.42, and 3.82 for W-Net, UASD-Net, and CSR-Net, respectively.
Trích dẫn: Trần Nguyễn Minh Thư và Huỳnh Quang Nghi, 2016. Hệ thống gợi ý hỗ trợ tra cứu tài liệu. Tạp chí Khoa học Trường Đại học Cần Thơ. 43a: 126-134.
Trích dẫn: Trần Nguyễn Minh Thư, Nguyễn Thị Thanh Lan và Nguyễn Hoàng Mẫn, 2017. Ứng dụng giải thuật gợi ý dựa trên nội dung hỗ trợ nông dân phòng trừ bệnh đạo ôn. Tạp chí Khoa học Trường Đại học Cần Thơ. Số chuyên đề: Công nghệ thông tin: 164-170.
Trần Nguyễn Minh Thư, Lưu Tiến Đạo, Trần Quốc Lịnh, Đào Minh Trung Tuấn, 2015. HỆ THỐNG GỢI Ý ÁP DỤNG TRONG QUÁ TRÌNH KÊ ĐƠN THUỐC. Tạp chí Khoa học Trường Đại học Cần Thơ. CNTT15: 179-188
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên