Đồng bằng sông Cửu Long với hệ thống sông ngòi và kênh rạch chằng chịt nên hiện tượng nước ngập do triều cường thường xuyên xảy ra. Mực nước sông không chỉ chịu ảnh hưởng của thủy triều mà còn bởi nhiều yếu tố khác như địa hình, mực nước nền và nhiều yếu tố khí tượng thủy văn khác. Hệ thống dự báo mực nước được xây dựng nhằm giảm thiểu những thiệt hại về kinh tế cũng như có sự chuẩn bị đối phó với triều cường. Mô hình mạng LSTM (Long short-term memory networks) được xây dựng dựa trên dữ liệu mực nước của 4 trạm trên sông Mekong được đặt tại Tân Châu, Châu Đốc, Vàm Nao và Mỹ Thuận để dự báo mực nước tại Cần Thơ. Tập dữ liệu năm 2012-2015 được dùng để huấn luyện mô hình và dữ liệu năm 2016 dùng để kiểm tra đánh giá. Để dự báo mực nước của 6 giờ tiếp theo, dữ liệu mực nước của 24h trước đó được sử dụng như đầu vào của mô hình. Kết quả thực nghiệm cho thấy kết quả dự báo có sai số tương đối thấp, giá trị RMSE trung bình của 6 h đối với 4 trạm đầu vào là 4.956 cm, với 1 trạm đầu vào là 5.463cm.
Trích dẫn: Trần Nguyễn Minh Thư và Huỳnh Quang Nghi, 2016. Hệ thống gợi ý hỗ trợ tra cứu tài liệu. Tạp chí Khoa học Trường Đại học Cần Thơ. 43a: 126-134.
Trích dẫn: Trần Nguyễn Minh Thư, Nguyễn Thị Thanh Lan và Nguyễn Hoàng Mẫn, 2017. Ứng dụng giải thuật gợi ý dựa trên nội dung hỗ trợ nông dân phòng trừ bệnh đạo ôn. Tạp chí Khoa học Trường Đại học Cần Thơ. Số chuyên đề: Công nghệ thông tin: 164-170.
Trần Nguyễn Minh Thư, Lưu Tiến Đạo, Trần Quốc Lịnh, Đào Minh Trung Tuấn, 2015. HỆ THỐNG GỢI Ý ÁP DỤNG TRONG QUÁ TRÌNH KÊ ĐƠN THUỐC. Tạp chí Khoa học Trường Đại học Cần Thơ. CNTT15: 179-188
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên