Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Tran Khanh DangJosef KüngMakoto TakizawaTai M. Chung (2020) Trang: 399-410
Tạp chí: Future Data and Security Engineering

We propose to combine support vector machine (SVM) models learned from different visual features for efficiently classifying fingerprint images. Real datasets of fingerprint images are collected from students at the Can Tho University. The SVM algorithm learns classification models from the handcrafted features such as the scale-invariant feature transform (SIFT) and the bag-of-words (BoW) model, the histogram of oriented gradients (HoG), the deep learning of invariant features Xception, extracted from fingerprint images. Followed which, we propose to train a neural network for combining SVM models trained on these different visual features, making improvements of the fingerprint image classification. The empirical test results show that combining SVM models is more accurate than SVM models trained on any single visual feature type. Combining SVM-SIFT-BoW, SVM-HoG, SVM-Xception improves 11.17%, 14.07%, 10.83% classification accuracy of SVM-SIFT-BoW, SVM-HoG and SVM-Xception, respectively.

Các bài báo khác
(2016) Trang: 780-790
Tạp chí: Nghiên cứu cơ bản và ứng dụng Công nghệ thông tin FAIR, ĐH. Cần Thơ, 8/2016
 


Vietnamese | English






 
 
Vui lòng chờ...