Detailed kinetic studies on the hydrolysis of glycylglycine (Gly-Gly) in the presence of the dimeric tetrazirconium(IV)-substituted Wells–Dawson-type polyoxometalate Na14[Zr4(P2W16O59)2(μ3-O)2(OH)2(H2O)4]·57H2O (1) were performed by a combination of 1H, 13C, and 31P NMR spectroscopies. The catalyst was shown to be stable under a broad range of reaction conditions. The effect of pD on the hydrolysis of Gly-Gly showed a bell-shaped profile with the fastest hydrolysis observed at pD 7.4. The observed rate constant for the hydrolysis of Gly-Gly at pD 7.4 and 60 °C was 4.67 × 10–7 s–1, representing a significant acceleration as compared to the uncatalyzed reaction. 13C NMR data were indicative for coordination of Gly-Gly to 1 via its amide oxygen and amine nitrogen atoms, resulting in a hydrolytically active complex. Importantly, the effective hydrolysis of a series of Gly-X dipeptides with different X side chain amino acids in the presence of 1 was achieved, and the observed rate constant was shown to be dependent on the volume, chemical nature, and charge of the X amino acid side chain. To give a mechanistic explanation of the observed catalytic hydrolysis of Gly-Gly, a detailed quantum-chemical study was performed. The theoretical results confirmed the nature of the experimentally suggested binding mode in the hydrolytically active complex formed between Gly-Gly and 1. To elucidate the role of 1 in the hydrolytic process, both the uncatalyzed and the polyoxometalate-catalyzed reactions were examined. In the rate-determining step of the uncatalyzed Gly-Gly hydrolysis, a carboxylic oxygen atom abstracts a proton from a solvent water molecule and the nascent OH nucleophile attacks the peptide carbon atom. Analogous general-base activity of the free carboxylic group was found to take place also in the case of polyoxometalate-catalyzed hydrolysis as the main catalytic effect originates from the −C═O···Zr(IV) binding.
Lý Thị Hồng Giang, Hồ Sĩ Thoảng, Lưu Cẩm Lộc, 2008. NGHIÊN CỨU TÍNH CHẤT HÓA LÝ CỦA XÚC TÁC OXIT KIM LOẠI TRONG PHẢN ỨNG OXY HÓA SÂU P-XYLEN. Tạp chí Khoa học Trường Đại học Cần Thơ. 10: 41-50
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên