Our investigation aims to propose a high-performance abstractive text summarization model for Vietnamese languages. We based on the transformer network with a full encoder-decoder to study the high-quality features of the training data. Next, we scaled down the network size to increase the number of documents the model can summarize in a time frame. We trained the model with a large-scale dataset, including 880,895 documents in the training set and 110, 103 in the testing set. The summarizing speed for the testing set significantly improves with 5.93 hours when using a multiple-core CPU and 0.31 hours on a small GPU. The numerical test results of F1 are also close to the state-of-the-art with 51.03% in ROUGE-1, 18.17% in ROUGE-2, and 31.60% in ROUGE-L.
Tạp chí: Enhancing cooperation to promote sustainable tourism in response to climate change, the fourth industrial revolution and artificial intelligence
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên