This study proposes models for searching and recommending learning resources to meet the needs of learners, helping to achieve better student performance results. The study suggests a general architecture for searching and recommending learning resources. It specifically proposes (1) the model of learning resource classification based on deep learning techniques such as MLP; (2) the approach for searching learning resources based on document similarity; (3) the model to predict learning performance using deep learning techniques including learning performance prediction model on all student data using CNN, another model on ability group using MLP, and the other model on per student using LSTM; (4) the learning resource recommendation model using deep matrix factorization. Experimental results show that the proposed models are feasible for the classification, search, ranking prediction, and recommendation of learning resources in higher education institutions.
Tạp chí: Hội thảo Quốc gia định hướng giảng dạy đại học, nghiên cứu khoa học và chuyển giao công nghệ trong kie nguyên số, 22/10/2023, Trường Đại học Công nghệ Đông Á
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên