Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 15(2024) Trang:
Tạp chí: International Journal of Advanced Computer Science and Applications

This paper proposes a novel ensemble algorithm aimed at improving the performance of k-Nearest Neighbors (KNN) classification by incorporating feature bagging techniques, which help overcome the inherent limitations of KNN in Big Data scenarios. The proposed algorithm, termed FBE (Feature Bagging-based Ensemble), employs an efficient ensemble strategy with sorted feature subset techniques to reduce the time complexity from linear to logarithmic. By focusing on essential features during iterative training and utilizing a binary search in the testing phase, FBE boosts computational efficiency and accuracy in high-dimensional and imbalanced datasets. Our study rigorously evaluates the proposed FBE algorithm against traditional KNN, Random Forest (RF), and AdaBoost algorithms across ten benchmark datasets from the UCI Machine Learning Repository. The experimental results demonstrate that FBE not only outperforms the conventional KNN and AdaBoost across all evaluated metrics (accuracy, precision, recall, and F1 score) but also shows competitive performance compared to RF. Specifically, FBE exhibits remarkable improvements in datasets characterized by high dimensionality and class imbalances. The main contributions of this research include the development of an adaptive KNN framework that addresses the typical computational demands and vulnerability to noise in the data, making it well-suited for large-scale datasets. The ensemble methodology within FBE also helps reduce overfitting, a common challenge in standard KNN models, by diversifying the decision-making process across multiple data subsets. This strategy ensures robustness and reliability, positioning FBE as a suitable tool for classification tasks in diverse domains such as healthcare and image processing.

Các bài báo khác
Số tạp chí 5(2024) Trang: 2281-2287
Tạp chí: International Journal of Religion
Số tạp chí 6(2024) Trang: 263-273
Tạp chí: Applied Set-Valued Analysis and Optimization
Số tạp chí 09(2024) Trang: 157--170
Tạp chí: Minimax Theory and its Applications
Số tạp chí x(2024) Trang:
Tạp chí: Journal of Computational and Theoretical Transport
Số tạp chí 26(2024) Trang: 1-14
Tạp chí: Agricultural Engineering International: CIGR Journal
Số tạp chí 15(2024) Trang:
Tạp chí: International Journal of Environmental Science and Development
Số tạp chí 23(2024) Trang: 357–369
Tạp chí: Acta Scientiarum Polonorum Technologia Alimentaria
Số tạp chí 15(2024) Trang:
Tạp chí: International Journal of Advanced Computer Science and Applications
Số tạp chí AF-873(2024) Trang: 1-9
Tạp chí: Indian Journal of Agricultural Research
Số tạp chí 14(2024) Trang:
Tạp chí: Asian Journal of Agriculture and Rural Development


Vietnamese | English






 
 
Vui lòng chờ...