Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 15(2024) Trang:
Tạp chí: International Journal of Advanced Computer Science and Applications

This paper introduces a comprehensive methodology for conducting sentiment analysis on social media using advanced deep learning techniques to address the unique challenges of this domain. As digital platforms play an increasingly pivotal role in shaping public discourse, the demand for real-time sentiment analysis has expanded across various sectors, including policymaking, brand monitoring, and personalized services. Our study details a robust framework that encompasses every phase of the deep learning process, from data collection and preprocessing to feature extraction and model optimization. We implement sophisticated data preprocessing techniques to improve data quality and adopt innovative feature extraction methods such as TF-IDF, Word2Vec, and GloVe. Our approach integrates several advanced deep learning configurations, including variants of BiLSTMs, and employs tools like Scikit-learn and Gensim for efficient hyperparameter tuning and model optimization. Through meticulous optimization with GridSearchCV, we enhance the robustness and generalizability of our models. We conduct extensive experimental analysis to evaluate these models against multiple configurations using standard metrics to identify the most effective techniques. Additionally, we benchmark our methods against prior studies, and our findings demonstrate that our proposed approaches outperform comparative techniques. These results provide valuable insights for implementing deep learning in sentiment analysis and contribute to setting benchmarks in the field, thus advancing both the theoretical and practical applications of sentiment analysis in real-world scenarios.

Các bài báo khác
Số tạp chí 5(2024) Trang: 2281-2287
Tạp chí: International Journal of Religion
Số tạp chí 6(2024) Trang: 263-273
Tạp chí: Applied Set-Valued Analysis and Optimization
Số tạp chí 09(2024) Trang: 157--170
Tạp chí: Minimax Theory and its Applications
Số tạp chí x(2024) Trang:
Tạp chí: Journal of Computational and Theoretical Transport
Số tạp chí 26(2024) Trang: 1-14
Tạp chí: Agricultural Engineering International: CIGR Journal
Số tạp chí 15(2024) Trang:
Tạp chí: International Journal of Environmental Science and Development
Số tạp chí 23(2024) Trang: 357–369
Tạp chí: Acta Scientiarum Polonorum Technologia Alimentaria
Số tạp chí 15(2024) Trang:
Tạp chí: International Journal of Advanced Computer Science and Applications
Số tạp chí AF-873(2024) Trang: 1-9
Tạp chí: Indian Journal of Agricultural Research
Số tạp chí 14(2024) Trang:
Tạp chí: Asian Journal of Agriculture and Rural Development


Vietnamese | English






 
 
Vui lòng chờ...