Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2024
Số tạp chí 1(2024) Trang: 1-12
Tạp chí: IEEE Systems Journal

This article introduces novel and deep learning approaches for the security analysis of a hybrid satellite-terrestrial cooperative network. More specifically, a satellite transmits information to a ground user through multiple relays in the presence of an eavesdropper. To prevent potential eavesdropping, multiple friendly jammers are employed to disrupt the reception process of the eavesdropper by artificial noise. Within this setting, we then derive the closed-form expressions of the outage probability (OP) and secrecy outage probability (SOP) of the considered system in the presence of imperfect channel state information. Important to mention is the fact that in complex systems (e.g., with multiple jammers, multiple relays, and considering the independent but nonidentically distributed Rician nature of satellite links), analytical approaches may not be effective due to their complex mathematical derivations. As such, we develop a highly effective yet low-complexity deep learning approach to estimate the OP and SOP of the system. Through extensive Monte Carlo simulations, we evaluate the OP and SOP of the system in various settings and demonstrate the effectiveness of the proposed solutions. Interestingly, the proposed deep learning method can achieve comparable performance to that of the analytical approach.

Các bài báo khác
Số tạp chí 03 May(2024) Trang: 1-12
Tạp chí: Sustainable Development
Số tạp chí 94(2024) Trang: 103364
Tạp chí: International Review of Economics & Finance
Số tạp chí 36(2024) Trang: 5487–5499
Tạp chí: Chemistry of Materials


Vietnamese | English






 
 
Vui lòng chờ...