Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2023
Số tạp chí 32(2023) Trang: 101005
Tạp chí: Remote Sensing Applications: Society and Environment

In remote sensing (RS), use of single optical sensors is frequently inadequate for practical Earth observation applications (e.g., agricultural, forest, ecology monitoring) due to trade-offs between spatial and temporal resolution. The advent of spatiotemporal fusion (STF) of RS images has allowed the production of images with high resolution at both spatial and temporal scales. Despite the development of more than 100 STF models in the past two decades, many of these models have not been practically applied due to the possibility of limited understanding of the models. Therefore, this study aims to provide a comprehensive review of STF methods, including their conception, development, challenges, and applications. This study focuses primarily on deep learning-based STF models, which achieved superior performance and significantly increased the number of STF models. This review can guide the selection and design of STF models, as well as proposes future directions for STF modeling. The findings of this review facilitate further STF research to improve the accuracy and application of fused RS images in the field of agriculture, forestry, and ecological monitoring.

Các bài báo khác


Vietnamese | English






 
 
Vui lòng chờ...