Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Tạp chí quốc tế 2023
Số tạp chí 22(2023) Trang: 1-23
Tạp chí: Internet of Things

Drowsiness is a common problem that many drivers encounter due to long working hours, lack of sleep, and tiredness. Tired drivers are as dangerous as drunk drivers because they have slower reaction times and suffer from reduced attention, awareness, and ability to control their vehicles. Drowsy driving causes many traffic accidents, especially fatal crashes. Therefore, the best way to prevent accidents involving drowsiness is to alert the drivers ahead of time. The accuracy of the drowsiness prediction reduces if the studies only focus on facial landmarks, ignoring other fatigue features such as tilting head, blinking, and yawning. To solve these problems, we propose an approach to detect driver drowsiness efficiently and accurately using IoT and deep neural networks improved from LSTM, VGG16, InceptionV3, and DenseNet. The use of transfer learning technique combined with multiple drowsiness signs is to improve the accuracy of the drowsiness detection in various driving conditions. The time-varying factor is also taken into consideration in the models developed from LSTM and DenseNet. When the driver’s fatigue is detected, the IoT module emits a warning message along with a sound through a Jetson Nano monitoring system. The experimental results demonstrate that our approach using deep neural networks can achieve high accuracy of up to 98%. Notably, this approach has also been verified in cases with/without wearing a mask and glasses. This has a practical meaning in the Covid-19 pandemic situation when everyone needs to comply with the wearing of masks in public places.

Các bài báo khác
Số tạp chí 13(2023) Trang: 295-301
Tạp chí: Online Journal of Animal and Feed Research
Số tạp chí 17(2023) Trang: 479-500
Tạp chí: International Journal of Management in Education
Số tạp chí 10(2023) Trang: 769-779
Tạp chí: International Journal of Membrane Science and Technology
Số tạp chí 12(2023) Trang:
Tạp chí: International Journal of Veterinary Science


Vietnamese | English






 
 
Vui lòng chờ...