A nanostructured Ni-ferrite material, NiFe2O4, was successfully synthesized via facile co-precipitation in hot water, followed by an annealing process. The developed Ni-ferrite was face-centered cubic, highly crystalline, and nano-sized. The Ni-ferrite anode revealed superior electrochemical properties for Li-ion batteries, such as high reversible capacity and long cyclability, without significant capacity fading. Specifically, this anode exhibited reversible capacities of 926 and 1586 mAh g−1 at the 1st and 150th cycles at 0.1 A g−1, respectively. The superior electrochemical performance was attributed to the size and unique properties of the Ni-ferrite spinel. Nano-sized materials were beneficial for creating a large contact area between the electrode and electrolyte, increasing diffusion rates of lithium ions, resulting in enhanced pseudo-behavior. The properties of spinel structure and the presence of Fe and Ni metals during charge/discharge in Ni-ferrite prevented the destruction of the anode and catalyzed the decomposition of the Li2O phase, leading to extraordinary highly-reversible Li storage.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên