We present necessary conditions for monotonicity of fixed point iterations of mappings that may violate the usual nonexpansive property. Notions of linear-type monotonicity of fixed point sequences—weaker than Fejér monotonicity—are shown to imply metric subregularity. This, together with the almost averaging property recently introduced by Luke et al. (Math Oper Res, 2018. https://doi.org/10.1287/moor.2017.0898), guarantees linear convergence of the sequence to a fixed point. We specialize these results to the alternating projections iteration where the metric subregularity property takes on a distinct geometric characterization of sets at points of intersection called subtransversality. Subtransversality is shown to be necessary for linear convergence of alternating projections for consistent feasibility.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên