Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Vol. 15, No. Special issue: ISDS (2023) Trang: 1-11
Tác giả: Giao Bui Cong

Similarity join over multiple time series is an interesting task of data mining. This task aims at identifying couples of similar subsequences from multiple time series and the two subsequences might have any length and be at any position in the time series. However, the task is extremely challenging since the computational time to search for couples of similar subsequences from two time series is very large. Moreover, the task needs to normalize two subsequences before conducting a distance measure on the normalized subsequences to consider the similar degree of the original subsequences. To address the problem, this paper proposes a method of similarity join over two time series under Dynamic Time Warping (DTW), supporting z-score normalization. The proposed method utilizes both a suite of state-of-the-art techniques for computing the DTW distance and a technique of incremental z-score normalization to reduce the computational costs. The method employs multithreading to improve runtime performance. If similar subsequences from two time series may not pair up because they are too far apart, the method might use a sliding window to constrain a scope for coupling similar subsequences. The experiments on the proposed method show that the method could return similar subsequences quickly and incur no false dismissals.

 


Vietnamese | English






 
 
Vui lòng chờ...