Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
164 (2023) Trang:
Tạp chí: The 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023

Blueberry leaf disease detection is really important to help farmers to early detect leaf disease and find a suitable method to cure the disease. Therefore, this research introduces an approach to detect and classify blueberry leaf disease by using an unsupervised method (auto-encoder), and a supervised method (support vector machine). The accuracy of our proposed method was evaluated by conducting the experiments on blueberry dataset captured at Can Tho City, Vietnam. The existing augmentation techniques was also applied to increase the data size of training and testing. For the first experiment on normal capturing conditions, the F1 scores of the proposed method and SVM are 89.28% and 81.48%, respectively. For the second experiment with noisy conditions, the F1 scores of the proposed method and SVM are 81.5% and 66.7%, respectively.

 


Vietnamese | English






 
 
Vui lòng chờ...