Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
1 (2022) Trang: 1-19
Tạp chí: International Journal of Computational Intelligence and Applications

Forecasting for time series has always been of interest to statisticians and data scientists because it o®ers a lot of bene ̄ts in reality. This study proposes the fuzzy time series model which can both interpolate historical data, and forecast e®ectively for the future with the important contributions. First, we build the universal set based on the percentage of the original data variation, and divide it to clusters with the suitable number by the developed automatic al- gorithm. Next, the new fuzzy relationship between each element in series and the obtained clusters is established. The bigger the variation is, the more the clusters are divided. Finally, combining the two above improvements, we propose the new principle to forecast for the future. The experiments on many well-known data sets, including 3003 series of M3-competition data show that the proposed model has shown the outstanding advantage in comparing to the existing ones. Because the proposed model is established by the Matlab procedure, it can apply e®ectively for real series.

 


Vietnamese | English






 
 
Vui lòng chờ...