Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
21 (2023) Trang: 47-52
Tạp chí: Tạp chí Khoa học và Công nghệ - Đại học Đà Nẵng (UD-JST)

Bài báo giới thiệu giải pháp máy thu rác trên mặt nước với chức năng nhận dạng rác tự động bằng việc huấn luyện mô hình học sâu với kiến trúc mạng YOLOv7. Đầu tiên, phương pháp Thinking Design kết hợp mô phỏng 3D được sử dụng trong quá trình thiết kế và đánh giá hiệu quả của máy thu rác trên mặt nước có tên WSCA (Water Surface Cleaning Autobot). Nhóm tác giả đề xuất phương pháp tăng cường dữ liệu để tạo thành tập FloW+ có thêm 800 ảnh so với tập data FloW (gồm 2000 ảnh với 5.271 chất thải nhựa trôi nổi). Cuối cùng là xây dựng và huấn luyện mô hình mạng học sâu để nhận dạng rác trên mặt nước với tập dữ liệu tập FloW+. Độ chính xác trên tập kiểm thử là Precision đạt 80,5%, Recall đạt 76,6%, mAP@0.5 đạt 78,8%, mAP@0.5...95 đạt 35,6% với FPS đạt trung bình là 17,6. Phương pháp này đem đến khả năng ứng dụng cao cho việc xây dựng một thiết bị thu rác trôi nổi tự động cũng như áp dụng mở rộng ở các quy mô lớn hơn.

 


Vietnamese | English






 
 
Vui lòng chờ...