Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
(2022) Trang: 736-741
Tạp chí: Hội nghị - Triển lãm quốc tế lần thứ 6 về điều khiển và tự động hóa VCCA 2021
Liên kết:

Exporting mangos generally requires accurate assessment of the mango quality based on different criteria to ensure the fruit’s value and prestigious brand-name. Automating the mango classification process based on surface features is usually performed by a machine vision solution. Because mangoes have heterogeneous surface curvature, quantitative evaluation of some features such as the area of defects on the mango skin requires that images of this feature area be taken from the front view to ensure accurate assessment results. Due to the oblong shape of the mango fruit, the quantitative indicators on the mango skin can be effectively determined from the front-view images of the mango surface on both side of its seed, on the dorsal and ventral surface. Therefore, this study aimed to develop an image acquisition system to capture images of the whole mango surface from which the front-view images of the four major mango faces could be identified for the benefit of developing an automatic mango grading system based on surface criteria. Experimental results on 104 Cat Hoa Loc mangoes showed that the images of the mango sides and edges were identified with the accuracy of 94.7% and 92.8%, respectively. These preliminary results show the potential for developing an automatic mango classification system using machine vision based on various quality features, especially quantitative ones.

 


Vietnamese | English






 
 
Vui lòng chờ...