We present a simulation study on the cosmic-ray detection capabilities of the Square Kilometre Array, the low-frequency part of which is being built in Australia. With nearly 60,000 antennas in a 1 km diameter, its antenna density is two orders of magnitude higher than at LOFAR. The wider frequency band of 50 to 350 MHz allows to resolve the radio energy footprint into smaller detail, as well as providing more information via the signal frequency spectra. We discuss the improved resolution in depth of shower maximum Xmax compared to LOFAR. Moreover, the next-level features open the possibility of measuring the longitudinal air shower profile in more detail than just its maximum Xmax, for individual air showers. The benefits are twofold: it gives additional information on the mass composition (independent of Xmax), and the main hadronic interaction models predict observable differences in longitudinal profiles and their distributions. Thus, it would help in constraining hadronic physics at energy levels beyond laboratory experiments.
Tạp chí: The Fourth International Conference on Communication, Computing and Electronics Systems . Lecture Notes in Electrical Engineering, vol 977. Springer. Coimbatore, India. September 15-16, 2022
Tạp chí: Association for Computational Linguistics (ACL 2023), In Findings of the Association for Computational Linguistics: ACL 2023, Toronto, Canada, 2023
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên