We study stability and well-posedness of parametric vector quasiequilibrium problems. Weak continuity of orders not greater than one around a given point, in the sense of Holder calmness of such orders, of solution maps is under consideration. Namely, we consider stability in terms of Holder calmness of solution maps at the considered point of parameter. Sufficient conditions for such Holder calmness are established for weak and strong vector quasiequilibrium problems. When applied to the particular case of scalar equilibrium problems, our results recover recent ones appearing online first in the literature. Then, we propose a Holder well-posedness notion for parametric vector quasiequilibrium problems, based on Holder calmness of approximate solution maps, and derive sufficient conditions for Holder well-posedness of both the mentioned weak and strong vector quasiequilibrium problems.
Tạp chí: The 2nd International Symposiun on Formulation of the Cooperation Hub for... & The 9th Inter-University Workshop on Education and Research..., Cantho University, Vietnam, Septemper 27, 2014
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên