This paper proposes a new approach for gene expression classification by using a multi-class support vector machine (SVM) with feature selection. The proposed algorithm is based on the One-Versus-All (OVA) multi-class strategy, which learns binary 1-norm SVM models. As the 1-norm SVM solution is very sparse, the algorithm can automatically suppress a large number of dimensions that correspond to null weights. This feature elimination improves the classification results for high-dimensional gene expression datasets. Empirical test results on 25 gene expression datasets show that our multi-class SVM eliminates 99% of full dimensions, resulting in 7.1%, 4.03% increase in accuracy compared to training SVM, random forest models on the full dimensions of gene expression datasets, respectively.
Số tạp chí In: Thai-Nghe, N., Do, TN., Haddawy, P. (eds) Intelligent Systems and Data Science. ISDS 2023. Communications in Computer and Information Science, vol 1950. Springer, Singapore.(2023) Trang: 304-312
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên