Nowadays, with the development of technology and the Internet, most households have surveillance cameras to observe everything around the house. Therefore, detecting abnormal human behaviors using videos generated by surveillance cameras has attracted much recent research. This paper focuses on applying the YOLO v4 to build the model detecting abnormal human behaviors, especially detecting fence climbing behaviors. Experimental results on the dataset, including 5340 images extracted from videos, showed that the model obtained the IoU measure of 71% and F1-score measure of 87%.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên