Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Vol. 16, No. Special issue: ISDS (2024) Trang: 98-106

Student dropout rates can have a significant negative impact on both the development of educational institutions and the personal growth of students. Consequently, many institutions are focused on identifying key factors that contribute to dropout and implementing strategies to mitigate them. This study aims to predict student dropout rates using classical machine learning algorithms while analyzing the key factors influencing these outcomes in higher education. The dataset includes demographic, socioeconomic, and academic information from various sources. Additionally, the study leverages the Local Interpretable Model-Agnostic Explanations (LIME) model to provide insights into the predictions, offering a clearer understanding of the factors driving dropout decisions. This knowledge is crucial for identifying influential factors and, more importantly, enhancing early intervention strategies and policies in educational settings, ultimately reducing dropout rates.

 


Vietnamese | English






 
 
Vui lòng chờ...