Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
188 (2023) Trang: 105–114
Tạp chí: Lecture Notes on Data Engineering and Communications Technologies book series

Diabetic retinopathy is a highly prevalent disease with a global increase in its occurrence. It is characterized by progressive damage to the retina, the light-sensitive lining at the back of the eye. If left untreated, it can ultimately result in permanent blindness. However, accurately determining the stage of diabetic retinopathy is a complex task that necessitates the expertise of experienced medical professionals. In this study, renowned contemporary architectures such as DenseNet121 and InceptionV3 were adapted and modified to predict diabetic retinopathy stages on the dataset obtained from the Kaggle competition - APTOS 2019 Blindness Detection. An explanation technique was employed to localize regions of distinct lesions to facilitate predictions for ophthalmologists. The findings of this study demonstrate that DenseNet121 outperforms other models, achieving a validation classification accuracy of 83.2%.

Các bài báo khác
Nhu-Ngoc Dao et al (2023) Trang: 370–381
Tạp chí: Lecture Notes on Data Engineering and Communications Technologies book series
 


Vietnamese | English






 
 
Vui lòng chờ...