Do sự phổ biến ngày càng tăng và thiếu các tiêu chuẩn bảo mật, các thiết bị Internet of Things (IoT) đã trở thành mục tiêu của các hoạt động độc hại như xâm nhập mạng và tấn công DoS. Với mục đích cung cấp một giải pháp an ninh cho các thiết bị IoT, một hệ thống phát hiện xâm nhập hai tầng áp dụng các mô hình máy học được giới thiệu trong bài viết này. Tầng thứ nhất của giải pháp là một mô hình phân loại nhị phân gọn nhẹ, được cài đặt trên gateway của các nhánh mạng IoT để phát hiện các hành vi độc hại trong thời gian thực. Tầng thứ hai là một mô hình phân loại đa lớp, được triển khai trên máy chủ đám mây để xác định loại cụ thể các hoạt động độc hại xảy ra trên nhiều nhánh mạng cùng lúc. Kết quả thực nghiệm cho thấy rằng giải pháp được đề xuất hoạt động hiệu quả, có thể phát hiện các hành vi tấn công sử dụng các tham số tùy biến hiệu quả hơn so với công cụ IDS truyền thống Snort.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên