Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
563 (2023) Trang: 841–856
Tạp chí: Lecture Notes in Networks and Systems book series

Breast cancer can be considered one of the significant causes of death, especially among women worldwide. Therefore, it is essential to detect and diagnose breast cancer as early as possible to reduce the adverse effects on patients and protect women’s health. This study proposes a model applying transfer learning and fine-tuning to classify and detect benign, malignant breast cancer, and normal breast. We train the proposed model with transfer learning from the pre-trained MobileNet model to identify breast cancers and optimize the prediction results. The dataset contains 780 ultrasound images categorized into three classes which are benign breast cancer (437 images), malignant breast cancer (210 images), and normal breast (133 images). The experimental results show that applying the transfer learning and fine-tuning technique from the MobileNet model achieves promising results, with the accuracy and F1-score being 0.9651–0.9648, 0.9412–0.9417, and 0.9060–0.9085, respectively, with three scenarios.

Các bài báo khác
In: Nghia, P.T., Thai, V.D., Thuy, N.T., Son, L.H., Huynh, VN. (eds) (2023) Trang: 3-10
Tạp chí: Lecture Notes in Networks and Systems
176 (2023) Trang: 68–79
Tạp chí: Lecture Notes on Data Engineering and Communications Technologies book series
 


Vietnamese | English






 
 
Vui lòng chờ...