Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Vol. 12, No 2 (2020) Trang: 53-59
Tải về

Article info.

 

ABSTRACT

Received 04 Mar 2020
Revised 25 Apr 2020

Accepted 31 Jul 2020

 

Deep learning methods such as recurrent neural network and long short-term memory have attracted a great amount of attentions recently in many fields including computer vision, natural language processing and finance. Long short-term memory is a special type of recurrent neural network capable of predicting future values of sequential data by taking the past information into account. In this paper,  the architectures of various long short-term memory networks are presented and the description of how they are used in sequence prediction is given. The models are evaluated based on the benchmark time series dataset. It is shown that the bidirectional architecture obtains the better results than the single and stacked architectures in both the experiments of different time series data categories and forecasting horizons. The three architectures perform well on the macro and demographic categories, and achieve average mean absolute percentage errors less than 18%. The long short-term memory models also show the better performance than most of the baseline models.

Keywords

Long short-term memory, recurrent neural network, sequence prediction, time series

Cited as: Dung, N.Q., Minh, P.N. and  Zelinka, I., 2020. Forecasting time series with long short-term memory networks. Can Tho University Journal of Science. 12(2): 53-59.

 


Vietnamese | English






 
 
Vui lòng chờ...