Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
(2019) Trang: 19-24
Tạp chí: The 11th International Conference on Knowledge and Systems Engineering (KSE 2019) --- October 24-26, 2019 | Da Nang, Vietnam
Liên kết:

Network security in general, research on detecting and finding attacks in computer networks in particular, has become a very hot topic. There are a variety of studies on machine learning models to attempt to detect network attacks, but these studies only focused on the models for prediction while the details of collecting data and the steps of processing and extracting information from network packets are not presented. In this research, we have employed and installed an active framework for collecting data using Honeynet and leveraging artificial intel- ligence algorithms, such as machine learning and deep learning, to detect attacks in computer networks. We have proposed to use only header information of the network packets for network traffic classification. Our results from the experiments prove that the framework of collecting network packets and detecting attacks in computer networks can be implemented and employed efficiently in practical cases. In addition, DARPA29F extracted from the proposed method with 29 features is a promising dataset to validate the learning algorithms.

Các bài báo khác
 


Vietnamese | English






 
 
Vui lòng chờ...