Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
(2019) Trang: 494-501
Tạp chí: Proc. the 12th Fundamental and Applied IT Research - FAIR'2019

Shrimp farming is a key sector in economic development in Mekong Delta provinces. Unfortunately, there are many problems in shrimp farming, especially shrimp diseases which cause a considerable loss. Shrimp diseases are expressed through symptoms and manifestations of shrimp. Recognizing the importance of shrimp symptoms to help raise an early warning, in this research the authors apply several state-of-the-art text classification algorithms such as Logistic Regression, Random Forest, Naïve Bayes, Support Vector Machines, and Multilayer Perceptron on a collection of 1098 observations categorizing into 14 distinct classes. Several thorough evaluation scenarios have been conducted including a process tokenization and models’ comparison on the obtained data set with different ratios. The results show that Support Vector Machines achieves the highest classification accuracy (81.27%), followed by Multilayer Perceptron, Random Forest, Logistic Regression, and Naïve Bayes. Through the results of the study, it is feasible to apply machine learning algorithms to diagnose shrimp diseases entirely based on textual symptom descriptions.

Các bài báo khác
 


Vietnamese | English






 
 
Vui lòng chờ...