Detection of the key courses affecting the learning outcomes of information technology students
Từ khóa:
Chương trình đào tạo ngành CNTT, Khai mỏ dữ liệu, Rừng ngẫu nhiên, Rút trích đặc trưng
Keywords:
Study program of information technology, Data mining, Random forests, Feature extraction
Abstract
This paper presents data mining approach for detecting the key courses which affect the learning outcomes of information technology students. We collect the study results of undergraduate students studying information technology programs at Can Tho University; and then the pre-processing step is to transform the dataset into structured one (i.e. the table format) suited for the input of data mining algorithms used in the next step. The random forest model is learnt from the dataset to extract the important features (the key courses). The experimental results showed that the key courses extracted by our proposed approach provide useful information to educational managers to improve the training efficiency.
Tóm tắt
Trong bài này, chúng tôi giới thiệu tiếp cận khai mỏ dữ liệu để phát hiện môn học quan trọng ảnh hưởng đến kết quả học tập của sinh viên ngành công nghệ thông tin (CNTT). Chúng tôi tiến hành sưu tập dữ liệu học tập của sinh viên tốt nghiệp ngành CNTT tại Trường Đại học Cần Thơ, sau đó thực hiện bước tiền xử lý dữ liệu, đưa dữ liệu về cấu trúc bảng. Chúng tôi đề xuất sử dụng giải thuật rừng ngẫu nhiên học từ dữ liệu để rút trích các môn học quan trọng trong chương trình đào tạo ngành CNTT. Kết quả thu được sau khi rút trích có thể cung cấp thông tin hữu ích cho các nhà quản lý giáo dục trong việc tổ chức giảng dạy để nâng cao hiệu quả đào tạo.
Đỗ Thanh Nghị, Phạm Nguyên Khang, Nguyễn Minh Trung, 2014. PHÂN LỚP DỮ LIỆU VỚI GIẢI THUẬT NEWTON SVM. Tạp chí Khoa học Trường Đại học Cần Thơ. 32: 35-41
Đỗ Thanh Nghị, Trần Cao Đệ, 2014. KếT HợP NGữ NGHĩA VớI MÔ HìNH TúI Từ Để CảI TIếN GIảI THUậT K LáNG GIềNG TRONG PHÂN LớP VăN BảN NGắN. Tạp chí Khoa học Trường Đại học Cần Thơ. 34: 66-73
Đỗ Thanh Nghị, Phạm Nguyên Khang, Nguyễn Nhị Gia Vinh, Văn Phạm Đăng Trí, 2013. SO SÁNH CÁC MÔ HÌNH DỰ BÁO LƯỢNG MƯA CHO THÀNH PHỐ CẦN THƠ. Tạp chí Khoa học Trường Đại học Cần Thơ. Chuyên Đề CNTT: 80-90
Đỗ Thanh Nghị, Phạm Nguyên Khang, 2013. PHÂN LOẠI VĂN BẢN: MÔ HÌNH TÚI TỪ VÀ TẬP HỢP MÔ HÌNH MÁY HỌC TỰ ĐỘNG. Tạp chí Khoa học Trường Đại học Cần Thơ. 28: 9-16
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên