This paper proposes a method to optimize the structure of the radial basis function neural network (RBFNN) by using particle swarm optimization (PSO) algorithm. The combination of PSO and RBFNN can overcome the disadvantages of RBF neural network. The PSO algorithm is used to determine the number of hidden neurons, initial weights, center and base widths in RBF neural network. After being optimised, the RBF neural network-based controller is applied in trajectory tracking to control an Omnidirectional Mobile Robot. This is a holonomic robot that can be operated easily in small and narrow spaces, due to flexible rotational and translational movementing, simultaneously and independently. The simulation results in MATLAB Simulink show that PSO-RBF-PD Supervisory controller was better than RBF-PD Supervisory controller.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên