Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
16 (2024) Trang: evae184
Tạp chí: Genome Biology and Evolution

The mitochondrial plastid DNAs (MTPTs) in seed plants were reported more than 40 years ago and exhibited a high diversity regarding gene content, quantity, and size. However, the mechanism that resulted in the current diversity of MTPTs in an giosperms has not been fully discovered. In this study, we sequenced and characterized the complete organelle genomes of Limonia acidissima L., a monotypic species of Rutaceae. The newly generated and previously published organelle genomes of 42 species were used to explore the diversity of MTPTs regarding quantity, gene content, size, and coverage of chloroplast genome (cpDNA) regions. The results showed that the number of MTPTs ranged from three to 74, of which the lengths were from 100 to 53,731 bp. The highest coverage of MTPTs was found in the inverted repeat region, whereas the small single repeat region had the lowest coverage. Based on the previous data and current results, we propose a scenario for the diversity of MTPTs in angiosperms. In the first stage, the whole cpDNA might migrate to the mitogenome. Then, different genomic events, such as duplication, deletion, substitution, and inversion, have occurred continuously and independently and resulted in extremely variable profiles of mitogenomes among angiosperms. Our hypothesis provides a new and possibly reliable scen ario for explaining the present circumstances of MTPTs in angiosperms. However, more genomic data should be mined, and more studies should be conducted to clarify this natural phenomenon in plants.

 


Vietnamese | English






 
 
Vui lòng chờ...