Nghiên cứu này trình bày việc phân tích và dự báo dữ liệu chuỗi thời gian bằng cách sử dụng các mô hình học máy khác nhau. Các phương pháp được sử dụng bao gồm Holt-Winters, ARIMA, hồi quy tuyến tính (LR), rừng ngẫu nhiên (RF), máy tăng cường độ dốc (GBM) và học máy tự động (AutoML). Các phương pháp tìm kiếm lưới nâng cao cũng được áp dụng cho ARIMA, RF và GBM để tối ưu hóa mô hình. Dữ liệu lưu lượng nước hàng tháng tại trạm đo trên Sông Tiền ở Tân Châu từ năm 1992 đến 2021 được sử dụng để huấn luyện và kiểm tra các mô hình. Kết quả cho thấy mô hình GBM với tìm kiếm lưới nâng cao cho độ chính xác vượt trội so với các mô hình khác.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên