Enhancement of the ionic conductivity and reduction of diffusion barriers of lithium-ion batteries are crucial for improving the performance of the fast-growing energy storage devices. Recently, the fast-charging capability of commercial-like lithium-ion anodes with the smallest modification of the current manufacturing technology has been of great interest. We used first principles methods computations with density functional theory and the climbing image-nudged elastic band method to evaluate the impact of an external electric field on the stability, electronic band gap, ionic conductivity, and lithiumion diffusion coefficient of penta-graphene nanoribbons upon lithium adsorption. By adsorbing a lithium atom, these semiconductor nanoribbons become metal with a formation energy of -0.22 eV, and an applied electric field perpendicular to the surface of these nanoribbons further stabilizes the structure of these lithium-ion systems. Using the Nernst–Einstein relation, in the absence of an electric field, the ionic conductivity of these penta-graphene nanoribbons amounts to 1.24 × 10-4 S cm-1. In the presence of an electric field, this conductivity can reach a maximum value of 8.89 × 10-2 S cm-1, emphasizing the promising role of an electric field for supporting fast-charging capability. Our results highlight the role of an external electric field as a novel switch to improve the efficiency of lithium-ion batteries with penta-graphene nanoribbon electrodes and open a new horizon for the use of pentagonal materials as anode materials in the lithium-ion battery industry.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên