Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Vol. 15, No. Special issue: ISDS (2023) Trang: 12-19

In recent years, Deep Neural Networks (DNN) have demonstrated remarkable success in various domains, including Intrusion Detection Systems (IDS). The ability of DNN to learn complex patterns from large datasets has significantly improved IDS performance, leading to more accurate and efficient threat detection. Despite their effectiveness, DNN models exhibit vulnerabilities to adversarial attacks, where malicious inputs are specifically crafted to deceive the models and evade detection. This paper provides insights into the effectiveness of deep learning-based IDS (DL-IDS) against adversarial example (AE) attacks. We tackle the weaknesses of DNN in detecting adversarial attacks by proposing the Convolutional Neural Network (CNN), which serves as an AE detector. We also utilize one of the XAI techniques, specifically SHAP, to enhance the transparency of the AE detector. Our results show that the AE detector has obvious effects for detecting adversarial examples and achieves an impressive 99.46% accuracy in our experimental environment.

 


Vietnamese | English






 
 
Vui lòng chờ...