Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
194 (2023) Trang: 115417
Tạp chí: Marine Pollution Bulletin

This study explored the potential for predicting the quantities of microplastics (MPs) from easily measurable parameters in peatland sediment samples. We first applied correlation and Bayesian network analysis to examine the associations between physicochemical variables and the number of MPs measured from three districts of the Long An province in Vietnam. Further, we trained and tested three machine learning models, namely LeastSquare Support Vector Machines (LS-SVM), Random Forest (RF), and Long Short-Term Memory (LSTM) to predict the composite quantities of MPs using physicochemical parameters and sediment characteristics as predictors. The results indicate that the quantity of MPs and characteristics such as color and shape in the samples were mostly influenced by pH, TOC, and salinity. All three predictive models demonstrated considerable accuracies when applied to the testing dataset. This study lays the groundwork for using basic physicochemical variables to predict MP pollution in peatland sediments and potentially locations and environments.

 


Vietnamese | English






 
 
Vui lòng chờ...