Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
Vol. 15, No. 2 (2023) Trang: 35-44

Electronic commerce (e-commerce) brings huge advantages to businesses for selling products through multiple online shops. However, companies have difficulties in supervising the prices of products set by different retail shops on e-commerce platforms. Addressing these difficulties, we suggest a method to identify and predict products that sell at incorrect prices using a machine learning model combined price analysis. The study uses four machine learning models: K-nearest Neighbor (KNN), Random Forest (RF), Support Vector Machine (SVM), and Multinomial Naive Bayes (MNB) and two text-based information extraction methods: BoW and TF-IDF to find to the best method. The research results show that the RF model and text-based information extraction method by the BoW provide more average accuracy than other specific models, when experimenting on the filter dataset the average accuracy after 10 runs are RF: 98.06%, SVM: 83.92%, MNB: 92.21%, KNN: 94.06%. Experimental results on the product dataset have an accuracy of RF: 83.02%, SVM: 55%, MNB: 79.33%, KNN: 79.36%.

 


Vietnamese | English






 
 
Vui lòng chờ...