Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
460 (2023) Trang: 128296
Tạp chí: Applied Mathematics and Computation

The theory of inverse location involves modifying parameters in such a way that the total cost is minimized and one/several prespecified facilities become optimal based on these perturbed parameters. When the modifying parameters are grouped into sets, with each group's cost measured under the rectilinear norm and the overall cost measured under the Chebyshev norm, the resulting problem is known as the max-sum inverse location problem. This paper addresses the max-sum inverse median location problem on trees with a budget constraint, where the objective is to modify the vertex weights so that a specified vertex becomes a 1-median, while minimizing the max-sum objective within the available budget. To solve this problem, a uni-variable optimization problem is first induced, where the objective function for each specified value of the variable can be obtained through a continuous knapsack problem. Leveraging the monotonicity of the cost function, a combinatorial algorithm is developed, which solves the problem in O(nlog n) time, where n denotes the number of vertices present in the tree.

 


Vietnamese | English






 
 
Vui lòng chờ...