Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
33 (2021) Trang: 637-657
Tạp chí: Journal of Experimental & Theoretical Artificial Intelligence

One of the most important assumptions in machine learning tasks is the fact that training data points and test data points are extracted from the same distribution. However, this paper assumes the situation in which this fact does no longer hold. Therefore, a task named space adjustment, through which the distribution of the data points in the training-data space and the distribution of the data points in the test-data space become identical, is inevitable. Hereby, authors propose a linear mapping for the space adjustment task in the paper. It considers four approaches for preserving localities among data samples during the space adjustment. Each approach is defined based on a different locality concept. Considering all locality concepts in an objective function, authors transform the space adjustment into an optimisation problem. The paper proposes to optimise the corresponding objective function by an iterative approach. Empirical study shows that the proposed method outperforms the baseline methods. To do experiments, authors employ a large number of real-world datasets.

 


Vietnamese | English






 
 
Vui lòng chờ...