Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
26 (2022) Trang: 17-28
Tạp chí: Engineering Journal

Turning locally available industrial by-products such as fly ash (FA) and ground granulated blast-furnace slag (GGBFS) into cement-free materials has been recently received much attention from researchers. Following this trend, the present study produces alkali-activated mortars (AAFS) using a mixture of FA and GGBFS as a precursor activated by an alkaline solution of sodium hydroxide and sodium silicate. Five AAFS mixtures were prepared for the evaluation of engineering properties, drying shrinkage, and microstructural observation using various FA/GGBFS ratios of 30/70, 40/60, 50/50, 60/40, and 70/30. The experimental results show that the proportions of FA and GGBFS significantly affected the performance of the AAFS in both fresh and hardened stages. Higher GGBFS content resulted in a reduction in flowability and higher fresh unit weight. The GGBFS-rich AAFS developed its mechanical strength faster than the FA-rich AAFS and the strength gain of the GGBFS-rich AAFS was significantly higher than that of the cement-based mortar at only 1-day old, confirming the applicability of AAFS as a structural material and its potential to replace cement in the no-cement mortar production. The AAFS sample incorporating 60% of GGBFS and 40% of FA exhibited the highest strength, lowest water absorption, and less drying shrinkage with a relatively dense microstructure among the AAFS samples.

 


Vietnamese | English






 
 
Vui lòng chờ...