Đăng nhập
 
Tìm kiếm nâng cao
 
Tên bài báo
Tác giả
Năm xuất bản
Tóm tắt
Lĩnh vực
Phân loại
Số tạp chí
 

Bản tin định kỳ
Báo cáo thường niên
Tạp chí khoa học ĐHCT
Tạp chí tiếng anh ĐHCT
Tạp chí trong nước
Tạp chí quốc tế
Kỷ yếu HN trong nước
Kỷ yếu HN quốc tế
Book chapter
Bài báo - Tạp chí
31 (2022) Trang: 1031-1050
Tạp chí: Statistical Methods in Medical Research

Model checking for logistic regression with covariates missing at random is considered. Based on the ideas of Copas (1989) and Osius and Rojek (1992) and studies of Homser et al. (1997), proposed are the two-type goodness-of-fit tests, Pearson chi-squared and unweighted residual sum-of-squares tests, in which their test statistics are centralized by subtracting their estimated mean to be mean-zero-form test statistics via the inverse probability weighting (IPW) and nonparametric multiple imputation (MI) methods to solve the missing value problem. The asymptotic properties of these test statistics are established under the null hypothesis and some regularity conditions. The test statistics conducted by using the IPW and MI estimators are asymptotically equivalent. Proposed are the IPW method and two bootstrap re-sampling approaches for estimation of the variances of the proposed test statistics to solve the issue of underestimating their variances by the MI method of Rubin (1987). Simulation studies are carried out to assess the finite-sample power performances of these proposed tests. Two real data examples are used to illustrate the applicability of the proposed tests.

Các bài báo khác
 


Vietnamese | English






 
 
Vui lòng chờ...