In this paper set optimization problems with three types of set order relations are concerned. We introduce various types of Levitin–Polyak (L P) well-posedness for set optimization problems and survey their relationships. After that, sufficient and necessary conditionsfor thereference problems to be L P well-posed are given. Furthermore, using the Kuratowski measure of noncompactness, we study characterizations of wellposedness for set optimization problems. Moreover, the links between stability and L P well-posedness of such problems are established via the study on approximating solution mappings. Tools and techniques used in this study and our results are different from existing ones in the literature.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên