An ordered median function is used in location theory to generalize a class of problems, including median and center problems. In this paper we consider the complexity of inverse ordered 1-median problems on the plane and on trees, where the multipliers are sorted nondecreasingly. Based on the convexity of the objective function, we prove that the problems with variable weights or variable coordinates on the line are NP-hard. Then we can directly get the NP-hardness result for the corresponding problem on the plane. We finally develop a cubic time algorithm that solves the inverse convex ordered 1-median problem on trees with relaxation on modification bounds.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên