This paper describes a novel computational framework for damage detection and regeneration in an artificial tissue of cells resembling living systems. We represent the tissue as an Auto-Associative Neural Network (AANN) consisting of a single layer of perceptron neurons (cells) with local feedback loops. This allows the system to recognise its state and geometry in a form of collective intelligence. Signalling entropy is used as a global (emergent) property characterising the state of the system. The repair system has two submodels - global sensing and local sensing. Global sensing is used to sense the change in whole system state and detect general damage region based on system entropy change. Then, local sensing is applied with AANN to find the exact damage locations and repair the damage. The results show that the method allows robust and efficient damage detection and accurate regeneration.
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên