In this paper, we present a novel improvement of the Roughly Balanced Bagging algorithm (Hido & Kashima, 2008) to deal with the imbalanced data classification. Our proposal use ensemble-based algorithms including Boosting (Freund & Schapire, 1995), Random forest (Breiman, 2001) as base leaner of the orginal Roughly Balanced Bagging instead of a single decision tree (Quinlan, 1993). In addition, the distribution in each subset determined by under-sampling of the majority class is belongs to negative binomial distribution function using adjust parameter. The experimental results on imbalanced datasets from UCI repository (Asuncion & Newman, 2007) showed that our proposal outperforms the orginal Roughly Balanced Bagging.
Title: Classification of imbalanced data with roughly balanced bagging
Tóm tắt
Trong bài báo này, chúng tôi trình bày một cải tiến của giải thuật Roughly Balanced Bagging (Hido & Kashima, 2008) cho việc phân lớp các tập dữ liệu không cân bằng. Chúng tôi đề xuất sử dụng các giải thuật tập hợp mô hình bao gồm Boosting (Freund & Schapire, 1995), Random forest (Breiman, 2001), làm mô hình học cơ sở của giải thuật Roughly Balanced Bagging gốc, thay vì sử dụng một cây quyết định (Quinlan, 1993). Chúng tôi cũng đề xuất điều chỉnh cách lấy mẫu giảm phần tử lớp đa số theo hàm phân phối nhị thức âm ở mỗi lần. Kết quả thực nghiệm trên các tập dữ liệu không cân bằng được lấy từ nguồn UCI (Asuncion & Newman, 2007) cho thấy rằng phương pháp mà chúng tôi đề xuất cho hiệu quả phân loại chính xác hơn khi so sánh với giải Roughly Balanced Bagging gốc.
Từ khoá: Dữ liệu không cân bằng, Roughly Balanced Bagging, Bagging, Boosting, AdaBoost, Rừng ngẫu nhiên, Cây quyết định, Phân phối nhị thức âm
Tạp chí khoa học Trường Đại học Cần Thơ
Lầu 4, Nhà Điều Hành, Khu II, đường 3/2, P. Xuân Khánh, Q. Ninh Kiều, TP. Cần Thơ
Điện thoại: (0292) 3 872 157; Email: tapchidhct@ctu.edu.vn
Chương trình chạy tốt nhất trên trình duyệt IE 9+ & FF 16+, độ phân giải màn hình 1024x768 trở lên