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Abstract
In this paper, we propose the expression which is considered as L, - distance between more

than two functions g,(x)=gq,fi(x), where {f,.(x)} are probability density functions,

k
q;, € (0,1),Zq , =1,k >2. From this idea, some results, related with L, - distance between
i=1
{f,.(x)} ; {g,(x)},i =1.2,....k are obatained. Beside, relations between L, - distance and
other measures, used in pattern regconition, are also established.
Key words: L - distance; maximum function; Bayes error; affinity.

1. Introduction

The solution of classification and discrimination is concerned with evaluating measure
of affinity between functions, defined as distance between them. According to Glick [5]
Mardia [9] and Ben Bassat [3], distance is the key in classification and discrimination.
Distance between descrete elements was bulit and popurlaly used. Beside, there are many
kinds of distance between two probability densities, such as Chernoff, Bhattacharyya.
Divergence, Patrick — Fisher, ... distances [17]. When more than two probability density
functions, some of definitions can be considered as distance: the conception of affinity of
Matusita [10] and Tousiant [11], the concept of k-point separation measurement of Glick
[5] or distance of Webb (2002) [16]. It is not easy to select suitable distance in each
problem. Gower [6] had much argument around this matter, but he had no best conclusion
of the optimal distance for whole situations. To choose the sensible distance, we can base
on some following criterions: first, simple and easy to calculate, second, knowledge
concerned with data and finally, speedy to run algorithm. With these criterions, it is
interesting to pay attention to L, distance for data of pattern regconition problem.

L, - distance between two functions are defined and used commonly. However, for
general, L, - distance between more than two functions has not been paid much attention
yet. On basic of maximum function, L, - distance between more than two probability

density functions was, first time, well - defined by T — Pham Gia [14]. It gives author new
criterion to build cluster of probability density functions [15]. In this writing, we propose
the expression, considered as I, - distance more than two functions g,(x)=¢,/,(x), where

k
{f,(x)} are probability density functions, g, € (0,1),2(1, =1,k >2. Beside, some results,
i=]

related with L, - distance between {,00} {g,(x)},izl,...,k are drawn. More over, the

relations between L, distance and other measures, as well as, quanlities of classification
and discrimination is shown in detail.



2. Relations between L, - Distance and Qualities in Classification and Discrimination
2.1 L - Distance
Let f,(x), f5 (%), fi(x) be the probability density functions,

k
£ () = max{f; (0, oo [ (0}, 8 () =41 (%) 4 € 0. 1), Zq,- =1. Then,

L, - distance is definied as following:
When k=2: “fnfz“l = ﬂf;(x)—fz(x)ldX, “ghgzul = ﬂgl -g2|dx
R" R

When k> 2: |, fyre filh = [fra (91 0
-/
Definition 1: Let g, (x) = max{g,(x), g2,(X),..., 8 (X)}, then L, - distance between k
(k>2) functions {g,(x)},i= 1,2,....k is defined by

“gpgz""agk“] = j.gmnx(x)dx_;c- (2)
R

Remark
i) 2“ 15 faseeos i “1 severs criterions of k-point separation measurement, proposed by
Glick [6] .

= 1,
ii) In case of q; = ;,z =1,2, ..., kwe have “fl,fz,...,f,,“l = k“g,,gz,...,g,,ul. Then,

2||g1, Zoreres g,,“1 also severs criterions of k-point separation measurement.

2.2 Bayes Error

The probability of misclassification in discrimination by Bayesian method is called
Bayes error. It is proved that Bayes error is the best error in pattern regconition. In detail, it
is defined as follows:

Let f,(x), f,(%X),.... i (x) be probability densities with prior (q) =(q,,95»9,) and
g.(x)=q,f(x), i= 1,2,....k .
a) When k =2
Without attention to prior probability, Bayes error is defined by Pe =t+0, where
1= P(wofw1) = I f,(x)dx : probability of assign a pattern in w, when it belongs to w;,
Ry
d=Pwijw2) = j £, (x)dx : probability of assign a pattern in w; when it belongs to w;.
R

Where R" = x| £,00) 2 £,(0)} RE ={x] i(x) < /().

If we have knowledge of prior probability ¢ of w,, then 1 and 3 become 7 and &
respectively as follows:
o= [af,(e)dv and 6*= [1-9)fy(x)x
Ry R
Where R = {x|gf,(0) > (-9}, RY =l 9() <A-)fa()}-
Let (q) = (¢, 1 - q), we determine Bayes error through out following equation

[ ]



Pe® =1 +6

b) When k > 2, Bayes error is defined by

Pef?) ;= Y fq.fix=1- Y [a. £, (x)x

i=l RM\Ry i=l pr
ensity Functions

a) Let A, , be the overlapping region’s measure of two density functions. Then, Ay is
onsider it as Bayes error Pe,,. Itis

2.3 Some Results Concerned with L - Distance between Two D

also minimum probability of misclassification, so we ¢

not difficult to have some results as follows:

"fl,fzul =2(1-Pe,,) = 2(1-4,)
“fvfz“, = Ifmax (x)dx_Pel,z = Ifmnx (x)dx"' jfmin (x)dx = 2(1— Ifmm (x)dx}

Rn
b) When f,(x) and f,(x) are one dimension normal densities MN( W,00), i=1,2
Suppose that g, < i1, then

2 1- [fide~ [ ] ey =

|

Xy

I
2(1- j_;;(_xmx- JAGES [fix)ax ] if 5, # 0,

—& X3

Where
—_ lul +#2 _ (:ulo-z2 —#20-12)—0-10-2‘\'(#1 _#2)2 + K
1= 5 7 X2 = 2 2
g, =0,
ol -p,ol)+0,0 -1,)+K
x3=(u1 2 = H:01) id 2\/2(#1 m K a6 o2y 22|20,
o, -0, o

In special case of p, = u, , we have
0 if o, =0,

+a0

“fih“] = ?{] B r]f!(r)dx— ]'fz(x)dx— Ifl(x)dx } if o, 20,

-m X4 X

Wherex4=y—0'10'2\/f,x5=;1+0'10'2«/1_5- and E = 22 2ln(gz—]zo.
o, o

-2 1
¢) When f,(x) and f,(x) aren - dimension normal densities (n 2 2)
1 1 - ,
fi(x)= "1__nexp[_'5(x_ ,ui)Tzil(x— lui)] ,i=1,2
|Zil5 (277")5

Letdte) = (2" - 2 @) -2 [) - @) e



=
Now, | £, f2l, = jfl (x)dx + Ifz(x)dx, where R, = {x:d(x)<0}, R, = {x:d(x)>0}
& 3

Ifz =%,=%, then d(x) is defined by

a9 = (YO 5= 0 = ) 0 + )

Where m = %[IH(E‘—'} ul ) - ) #Z}

d) With prior probability g and (1 —¢) are givento f(x) and f,(x) respectively.
Let 7 and o be the probability of mis-classifing a pattern to first and second population.
According Lissack and Fu [8], relations between Bayes error Pe;, =7+ § and L'-

distance between gf, and (1—-q)f, is determined by 2Pe,=1-Z , in which
4 =“g1’g2“1 = "%’(l_q)];"] :

Suppose that the prior probability ¢ is random, then, 1, d and Pe, , are also
Random. When we have no knowledge about f,(x), f,(x) and g , but we know that t and

$ are independent, we can find out a density function A(z) of Z. In this case, h(z) is defined
by density functions of  and 3 on 0,1/4).

Theorem 1 Let T and & be independent random variable, characterized by two density
functions f(x) and f,(x) respectively, on interval (0;1/4). Then, the density function of Z
on (0, 1) is well - defined by

!
14 1-2z-2t), . 1
El_'z[;fl(t)fz( > )dt if 0<z<5
h(z)=4 ¢ 3)
l—_z
17 1-z-2t o1
5 a[fl(t)fz( 22 )a’t if ESZ<1

Proof
Suppose that f,(x), f,(x) are probability density functions of 7 and &
respectively. Let y=1+J , we have

g = [f-0)fr(x)dx

Since & is random variable on (0,1/4), meaning f,(x)=0 Vx ¢ (0,1/4), we obtain

1

g = [f-0f,()dx

Lett=y—x=>dt=—dx; x=0 :>t=y,‘x=%:>t=y—%
1

- y
Then, g) = [fi(0,(-D=dD) = [f(Of(-ndt
y 1

ar

As Tand 6 € (0,1/ 4), y e (0,1/2), we investigate two cases



D If 0<ys%,then y—%so.Fromthat,

¥y Y
g = [ £OLG-Ddi= [fOf,(y-nat )
y—% 0
i) If L<y<l, then y—1>0. Hence
g SV T
) :
g = [ AOLG-Ddi= [[Of(y-nat )
Because y = 1;22— and ', = —% , density function of z is defined by

n(z) 4y, lg(lgz}%g(lﬂ ©)

Replae (6) by (4) and (5), we obtain (3). ]

Corollary

a) Let T and & be inpendent random variables which have Beta distributions on
(0;1/4), result about h(z)is descrided in [13].

b) Let T and & be inpendent random variables which receive normal distributions

on (0;1/4): T ~ N(,,6%;0,1/4)), 6 ~N(11,,63;0,1/4)

i)If0<z<%,then

_ . _ [ 2 52
h(z)=lK,exp(2C B]exp(——lizz+3 Cz) i) __oli-3g) +K2+———0’ !
2 4 4 2 20-2 '0'12 +o'§ 40'1 0'2
o,(1-2) . Noi+0]
o Tl E g NI ©
20, o} +0; 40,0,

2 2 x _i
Where B:—I—— c=tTH K, = H0) — T, D(x) = ! Ie 24t
0

2 a2 2 3.4
2o, +0;) g, +0; 0,0,y 0l +0?

ii)[l']:*s:-:l.then

L

1 2C-B B B-C
Wz)==K T i3
(2) 5 Iexp( a )exp( 2 z 5 z)

o,(1-2) —o,(1-2)
o —2—=2_+K, |-0 —F—=+XK, ®)
{20‘1\1012 +03 } [20'”/0'12 +0?
¢) On other hand, let 7 and & be inpendent random variables which are characterized
by exponential distributions on (0,1/ 4): 7 ~exp(by;0, 1/4);5 ~ exp(b2;0, 1/4)

n



i) If b; > b,

b,b, b, +b, bz b,z . 1

___’_~__—exp —-—2—= fexp <= —exp it if O0<z<—

i 2ab(bh,—b,) 2 2 2 2
- exp(- b,(1-2) —exp(— b‘(l-z)) if -I-SZ<1
2ab(b, - b,) 2 2 2

1 1

b

Where a = jf,(x)dx 1- e4 b= Ifz(x)dx—l e !

ii) In special, if b; = b2 = ¢, then

h(z)= ; (10)

-
—

In which d = Iﬁ(x)dx jce'“dx l1-e

To obtain (7), (8), )] from (3), we have to run complex calculation. We do not describe it
in this writing.

2.4 Some results related with L, - distance between more than two densities
Determine k n — dimension densities fi(x), k > 3, let d,j =fi-f ’ and
R" ={x:d,,(x)>0}, R/ ={x:d,,(x)20Nd,(x)<0}, R ={x:d,(x) <0}
where p=2, ...k g=1, ... k- 1; 1=2, .. k-1,m=1+1 .., kn=12, .., [-1.We

obtain |f;, o fill = jfl(x)dx+i [fimde+ [ Gydx-1.

If random variables receive n — dimension distributions discriminant function

d,;(x) becomes dij(x) = [,u, ) - ul( ‘}x [(Z )y - J’lx—m

in which m = E[ln[llz 'll} LV TP & 'm}

Theorem 2 The relations between Bayes error and overlapping coefficience are shown as
follows:

1
a) ||g1,g2,...,gk‘ll = -];[k -1 —kPe§j’2{ k] k>3 (12)
1 _
b) ||g1,g2,...,g,¢||1 =1-;-LZ/1§;,” - ZI;AS;,’,; Fot (=D ‘Ag‘;_)“,‘} (13)
<l k<l<m



Where /15]"), is the measure of  overlapping of probability density functions
g:(x),8,;(x);-»81(%)-
Proof
a) We define rgag{q, f,(x)} =q,f; on Rj. Then, Bayes error in pattern regconition
is given by
Pey = i fa,f,(0dx
]

J=1 R"\R"

i{ fg,f,(0dx - I"rggf{qlﬁ (x)}dX}

=1| g

[

= [ q,f,x)dx- Z Imax q,f,(x)}ax

=1- Imgf{q,ﬁ(x)}dx

Otherwise, "gl, [ SR gk“1 = Igmax (x)dx—— Thus,

||g1’g2’~-'agk“1 =1—Pe(q) —}I;=%(k—l—kPe("))
b) Since
8 rax (¥) = ng me(g,,g,) zmm(g,,gj,g,)+ <+ (=1} min(g,, g,»"* -g,)

=1 i<j i<j<l
We reach .[grmx (x)dx=1- Z;{(tl) +Z/1(q) 4 +(_ )k -1 (q) w
R" i<j i<j<l
Therefore, k Igmax(x)dx k- k[Z)}q) +z;{(‘l) +oet (-1 )kl (q) }
i<j i<j<l

The above expresswn means that

“glagZa'"agle =1"%—\:Z/1(q)+z/1(q) + - +( l)kl @) ,k} -

i<j i<j<i
1
In case of g, = _I; , the equations (12) and (13) becomes

Ui fomofill = -1-kPEED,, k23

uﬁ,fz,...,fku,=(k—1>(1——) DY R RORIED Y RES D g,

k<l<m
These equations are shown in [14].

Theorem 3 The relations between “gl,gz,...,g,(“l and other measures is described by
results:



a) (k+1)|lg1,g2,---,gk+1“1"k“g1,g2,---,gk“1= 1- jmin{hl(x)’fkn(x)}dx (14)
R

where hy(x) = max{f;(x), (X)yerer [ (XD}, k23
b) kg1 g2sees il = 7815 820 &l + k- W&ot :8 iz il #1- 4 (15)
in which n,k23,n<k, A= jmin{k1 (x),k,(x)}dx and

R
kl (JC) = max{fl (x)’ fz (X),..., fn (X)} ’ k2 (X) = max{fn+l (X), fn+2 (JC),..., fk (X)} .
Proof
a) We have

1 1
Pefy/) =1 -+ fmGydx and pelgll=1 - - [0z,
n R"

2o 1,2, k+

R
where fy(x) = max {f; (x), fo ()seens fi (%)}, 1) = max A WAL I AW E)

Since 1, (x) = B (X)+ o (¥)—min{ (x), fea@®)}
We reach

pelt/) = [l 9+ fea () - minth (9 f ()}
Rﬂ

1 k 1 1
e 1= B |- — x)dx +B
k+1 k+l[ kRJ,"() } k+1,£f"*‘()
k
= mP e, + B,

. 1 .
In which B = 1 R[mln{hl(x), e +1(x)}iac .

Replce Pt =1-E-lg gl 50 Pelith, 1=y lengaogial, 0

above expression, we obtain equation (14).
b) In case of equal prior, we have

n"gl’gZ ""agnul =n-1- nPe(”")
m"gﬂ+l’gn+2,---,gk“1 = m_l_mPe
Therefore, n“g1,gz,---,gn“1+ '71“g,,+1,g,,J,Z,...,gk“1 =k —2_|npY" L p ™ o)

el,2,.n e12,.m

A'm) where m =k—n.

Other hand, Pelt/®, = l—% J max { k,(x), k, (x)}dx

1,2,k
R

1—% [Tk G0+ ey ()= min {k, ()., ()} e

Iy

= -,::—[’?1‘ jkg(.r]cir-i-n— Ik:{x)dr+ jmin{k‘(x)’kz(x)}dxi\
i R

' R

= IE [mﬁ{u s

The above equation means that

{1/n)
1 + ”P:: 12; u+ A]



m . 1
e+, - ke, ~ A= {1l |-
Substitute this result in (16), the proof can be finished. [

Theorem 4 We have some results about bounds for distance between k functions
€582 8, as following:

a) max{q,}——<“g1, 8o ,gk||1<1—; k=2 Qa7
The equallty in left szde happens if g,(x) coincide and does i m the right if gi(x) disjoint.
b) ~ maX{lg,,g, ||} min q.}—— <|g1 8284, Zleg,,g, I (18)

Proof
2) We have g, , (x) < max{g, £,(0: 4,5 (90 fy (0} S 20, (x) and
If- (x)dx =1

Hence, g, < Igm (x)dx <1< max{g;} < Igm (x)dx <1

R" R"
1 1
< max{qg, ——s Ndx——<1——
@3- Rigm() <14
From that, we obtain (17).
b) We also have

[max{g, (1), 8,(x), 8 (x)}d = max [max{g, (x).g, (x)}dx
R" R

- max{Lfen ) + 30 0)

2 mar{ ] ug,,g,\l}ﬂzgn{%(qﬁqj)}

> maelle o} mgn{(ql,qz,...,qk»

So, Rj"gm (x)dx - % 2 %r?gx{lg,-,g j||1}+ min{(g,.q; vt} - meaning that we finish
the proof of left side.

According to Glick (1973),

DY RTAED) R

k

= k[max{g,. g, & }l- 2.8,

J=1

Hence, max{g,,g,,"" g} S—Zz\g, g,l“' Zg,

i< _[

9



As Ig, (x)dx =1, the above inequality turns to Igm x)<s— ZZ J'“g,,gju +—
R R"

i< j g"

It is synonym with right side is proved. =

3. The Relations between L, - Distance and Other Measures

According [14], the relation between Bhattacharrya D, (f,, f,) and Pe,, is

defined by %(1 _\i- 4D52(f1,f2)] < Pe,, < Dy(fys f2)- (19)

Substitute Pe, , = j = (x)dx—“ - f2"1 in (19), we obtain the relation between Dy and

4
14 £all:
[IARGE NG AL VA R Ifm(x>dx—%(1—\/l-4D§ t:)

Theorem 5 The theorem demonstrates the relation between L, - distance and Affinity,
proposed by Toussaint

k
Let fi(x) be probability density functions and gi(x) = qi fi®), g (0, 1) Zqi =1,k>2,
i=1

we reach

a) |8, 820 il 2 ( Hq;”D (s faresSi) } L (20)

b) |21, 820w &kl >1—%-(Zq q‘,-“’Dr(f,-,f,-)“’""”) @1)

i<j

k
in which o = (&, X35, )s B> @ e (0,1), Zaj =1,ij=1,2,...,k \
j=!

k
Dy (fys frren £i)° = JLILA 1 6

Proof

k o
a) Foreach j=1,2,.., k,wehave (qufj} Z(qij’i)“‘, i=12,...k.

j:

Therefore,(};q f J) H(q,f )" @Zq,f ]_[(qu )a (22)

Other wise, ({glsrkl{q 1 })al < (g i) seeen ,(glg{q i j})ak <(gf )
Hence, (f?}g}{q; f,}) e | (q,- fj)a;

It means that mm PE I q.fi ) (23)
JJJ

10



Combine (22) with (23), we obtain 0 < quf H(q,f )’ Zq, {qu }

= ls_/sk

Since qufj 1mlr}c{q fj} consists of k—1 terms g, f; ,
=i <js

iq}f mln{q f}<(k l)max{qu}

n 1<jsk
J=l

k
Therefore, we obtain 0< Zq i —H(q i )"f <k-D max{q o }
j=1 =l

1< jsk

Take intergral on R” both two sides of above inequality, we reach

k
1-T 4y Dr(fis forens )T S E=D) [ 8 ()l
= R

Substitute jgmax (x)= %(kllgl, gors Gily + 1) in above result, we obtain (20)

e
b) We have
k
Pe%fg.).].,k =1- jgmaxdx =z Iqujdx
R JELRMR,
_ZZ Imm{q f,,quj}dx D jmm{q,f,,quj}dx
J=1j#i R, i<j RyUR,

As [mm{q fi:4,f; }}ﬂ (g; f:)ﬂ and mm{q fi:4,7, }]] g (q,f,) , we attain
minla, f.4,7, <@, £, (@, £,) - Thence, Pl <3 [@ S q,7,) P ax

I<j p"

Once more, substitute Pe® =1— Igm (x)dx = —1k-[k ~1-k||gy» 825> gl ],
=

we obtain (21). [
In instance, o, =, =...= O, =%,on basic of (20) and (21), we obtain relation between

lg> &5 g/, and Matusita distance. In special, when k = 2, relation between lg:- £}, and
Hellinger distance is also drawn.

4. Computing L, -Distance and Bayes Error
To calculate L, - distance between {f,.(x)} and {g,.(x)}, i=1,2,...,k,as wellas

Bayes error Pel 5 x> tWO essential tasks which have to be done are finding out maximum

functions f,, (), & (¥) and evaluating integral of maximum functions on R".

In case of one dimension and & = 2, we can find out, for exponentail, beta and
normal distributions, the expression of maximum function and formula of Bayes error in
detail. When k > 2, the task becomes more complex. This difficulty comes from the very
varied forms of interaction space curves between the density surfaces, which are either
normal or not, although they are project into conic curves in the horizonetal plan, in the
normal case. On basic of Maple software, a program is described by us in [13] in order to

11



calculate L, - distance for k one — dimension densities and Bayes error in classification and
discrimination.

Otherwise, in case of multi - dimension, the task gets extremely complex, even in
case of two dimension. To solve the task, intergration of max function can be done by
quasi-Monte Carlo method. A program by Matlab software which be used to calculate in
example 2 this section is also written by us.

Explicitly, we determine two following examples:
Example 1: Let examine seven normal densities with parameters L;,0;
=03, =40,y = 9.1, u, =1.9, 15 =53, s = 8, u, =4.8
c,=1.0,0,=13,0,= 14,06, =1.6,0,=2,6,=19,0; = 23

Figure 1. Graph, f,, (x) and g, (x)for 6 densities

Max function can be found as following:

£ if —1.2831<x<0.9856

f, if 2.5835<x<4.8932

£, if 82961<x<125172

fo(R)=1f, if (-78585<x<-1283BL{09856<x< 2.5835}
W £, if 4.8932<x<6.6485

£ if {6.6485<x<8296U{12.5171<x<23.3294
£ if {x<-7.8585U{x>23.3294}

L, disance between f; is Ifrs far fol, = 2:6946.

In case of g, = L ,i=12,.7, we have (g,,82:-8&7f ~ 0.3849, and Bayes error is
iT g 1952 7
PV =0.4722

Example 2: Let wy, w2 and w3 be populations, characterized by two — dimension normal
densities with known parameters

. 0.706 —0.251 2] 5 - 0.792 -0.298
1710251 0.507 s Tl #2771 -0298  0.507

[4], _[o307 -o0200] 4
# =1, 15 =1 o200 0706 [ 7|4

12



5:%5—-.—-

ZEzz==s

Figure 2. Graph for 3 two - dimension normal densities

Max function of them is defined by
filx,y) if (x,y)eR
fonlm ) =4 filey) if (ny)ek
filey) if (x,y)eRUR)
In which,
R ={h —y<0uh2—y>0)r\(h3—y>0mh4—y<0)},
R, ={h -y>0nh,—y<0)n(h _y>0nhg—y<0),

h, =—-0.0421x ~1.0956 +1 2787.107°+/9.5067.10" x* —9.54027.10" x + 2.61776.10”

h, = —0.0421x—1.0956—1.2787.10"”\/5.506?.10“‘ ©? —9.54027.10" x +2.61776.10"
h, = —0.7292x +52.2358+6.8626.1 0794/2.5348.10"* x* —9.5629.10" x + 4.7005.10%
h, =—0.7292x +52.2358 - 6.8626.10-1°4/2.5348.10" x? —9.5629.10"® x + 4.7005.10”
h, = —0.1500x +7.2805+1.0778.107°4/1.2354.10°x* — 3.5745.10° x +6.2027.10”

h, =—0.1500x +7.2805-1.0778.10™° 12354.10°x* —3.5745.10% x + 6.2027.10%
we obtain | £, £, 3, =0.95 and Pel}) =0.35.

5, Conclusion

e . 1.
In this article, we have supplemented some results about using L - distance
between these k probability density functions. Furthermore, we propose the expression

e . 1. .
which is considered as L - distance between more than two functions g,(x). From here,

some new results have present: Bounds for distance, relations with affinity of Toussaint,
Bayes error and overlapping coefficience. Relations concerning this distance of two
consecutive distances (which only differ by one element) and those of two distances and

their union have established. Problems of computing are also considered in article. These

results will be used in classification, discriminantion and cluster analysis.
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