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1. Introduction

In their seminal papers, Hadamard [1] and Tikhonov [2] initiated two ways of developing a well-posedness study
for various mathematical problems. For constrained optimization the pioneer work was [3] of Levitin and Polyak, who
extended the definition for unconstrained problems in [2]. Observe that the notions of Hadamard and Tikhonov were proved
closely related in [4,5]. Recently, these two notions have been more blended and linked to stability theory in parametric
well-posedness study [6-12]. Well-posedness for various problems related to optimization has been recently intensively
considered, see e.g.. for optimization problems [5,9,12-16], for variational inequalities [ 17-21], for Nash equilibria [22,23],
for fixed-point problems [8,19,24], for inclusion problems [8,19,24] and for equilibrium problems [6,7,25]. In most cases it
is commonly assumed at least that the involved functions are lower semicontinuous. But in many practical optimization
and control problems we meet even nonsemicontinuous functions. In [9,26] a weaker notion of lower pseudocontinuity
is introduced to investigate parametric constrained optimization. In this paper we propose generalized level closedness
definitions and use them together with pseudocontinuity to consider well-posedness in the Tikhonov sense, which is
more important in approximation study and numerical algorithms, because all algorithms consist of providing sequences
of approximate solutions convergent to an exact one. Simple examples (e.g. Examples 2.1 and 2.2) ensure that these
properties are properly weaker than semicontinuity and hence results under assumptions about these properties are
significant in practical situations. Note that quasiequilibrium models contain quasivariational inequalities, complementarity
problems, vector minimization problems, Nash equilibria, fixed-point and coincidence-point problems, traffic networks,
etc. A quasioptimization problem is more general than an optimization one as constraint sets depend on the decision
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{(f (x0) < liminff(x,), resp.). Note that in this paper we are concerned always with sequential properties. Hence we write
clearly “sequential” or “sequentially” only to remind the reader in case necessary. Observe that f is usc at xo if and only if
forall {x,}] — xpandallb € R,

[f (%) = b, ¥n] = [f(x0) > b]

and similarly for lower semicontinuity. Therefore, we propose the following natural definition.

Definition 2.1. Let X and Y be topological spaces,f : X — Randg : Y — R.

(a) f is called (sequentially) upper 0-level closed with respect to (w.r.t.) g at (o, o) € X x Y if, for any sequence {(X,, yn)}
convergent to (X, Yo),

U (xa) +8n) = 0, ¥n] = [f(x0) + (o) = 0].
(b) f is called (sequentially) lower O-level closed w.r.t. g at (o, yo) if, for any sequence {(x,, y)} convergent to (xo, ¥o),
[f (%) +8(yn) <0, Vn] = [f(x0) + g(o) < 0).

If we have f in place of f + g in the above inequalities, we say that f is upper (or lower) 0-level closed at xo. While if we
have b € Rinstead of 0, then of course “O-level” is replaced by “b-level”.

Remark 2.1. If f and g are usc (Isc, resp.) at x, and y,, respectively, then f is upper (lower, resp.) O-level closed w.r.t. g at
(%o, Yo). Indeed, if {(xq, ¥a)} — (X0, yo) and f (x;) + g(y») > 0 for all n, one has
f(x0) +g(¥o) = limsupf(xy) + lim sup g(ys) > lim sup[f (x,) + g(¥»)] = 0.

From now on we use id to denote the identity map on R. The following example shows that the converse of the above
remark is not true.

Example 2.1. Let f : R — Rbe defined by

_Jo, ifxeq,
fF®=11 ifxer\Q,

where Q is the set of the rational numbers. Then f is upper 0-level closed w.r.t. id at (, y), for all (x,y) € R x Ry, butfis
neither uscatanyx € Q norlscatanyx € R\ Q.
Definition 2.2 ({9,26]). Let X be a topological space and f : X — R.
(a) f is said to be (sequentially) upper pseudocontinuous at x, € X if,
[f(¥) > f(x0)] = [for any {x,} — xo,f(x) > limsup f(xx)].
(b) f is called lower pseudocontinuous at xp € X if,
X)) < fx)] = [forany {x,} — Xo,f(x) < liminff(x,)].
(¢} f is termed pseudocontinuous at xo € X if it is both lower and upper pseudocontinuous at this point.
The class of the upper pseudocontinuous functions strictly contains that of the usc functions, see [26]. We include here
a new simple illustrative example.
Example 2.2. Let f : R — R be defined by

x+1, ifx>0,
fx)=10, ifx=0,
x—1, ifx<0.

Then, f is pseudocontinuous at 0 but neither usc nor Isc at 0.

We note further that if f and g are Isc (or usc) at x then f + g is Isc (usc, resp.) at xo. Unfortunately, this property does
not hold for pseudocontinuous functions as shown by

Example 2.3. Let f1, g; : R — R be defined as follows

ifx > 0,

11
hx)y = !{ and g;(x) = —x.

, ifx<0
2
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The assumptions of Theorem 3.1 are essential as indicated in the following examples.

Example 3.1 (The Compactness of X Cannot be Dropped). Let X = R, A = Ry, Ky(x, 1) = Ko(x,A) = R, A = 0 and
fxy,2) = 27 + A Itis clear that in X x A, Ky is closed and K; is Isc. (ii) holds as f is continuous in X x X x A. But
S(x) = Rforall A € A. Hence, (QEP) is not well-posed at 0. Indeed, let A, = % — O0and x, = n € S(X,) for all n. It is clear
that {x,} has no convergent subsequence. The reason is that X is not compact.

Example 3.2 (The Closedness of K, is Essential). Let X = [—2, 1], A = [0, 1], Ky(x, &) = (=2x, 1], K2(x, ») = [0, 1], A = 0
and f(x,y, A) = x(x —y).Itis not hard to see that X is compact, K, is Iscin X x A, (ii) is fulfilled (by the continuity of f). But
S(0) = {1}and S(A) = {0, 1} for all A € (0, 1] Therefore, (QEP) is not well-posed at 0. The reason is that K; is not closed at
X x {0}.Indeed, let X, = A, = } and z, = —1 € Ki(xs, An) = (=2, 1]. We see that {z,} tends to 0 ¢ K, (0, 0).

Example 3.3 (The Lower Semicontinuity of K, Cannot be Dispensed). Let X = [—1,1], 4 = [0, 1]. K;(x,A) = [0, 1],
f,y,\)=x+y, A =0and

— {_1701]}7 lf)\.=0.
Ky(x, 2) = [{0. 1}, otherwise.

Then X is compact, K is closed in X x A and (ii) holds (by the continuity of f in X x X x A). ButS(0) = {1} and S(1) = {0, 1}
for all A € (0, 1]. Thus, (QEP) is not well-posed at 0. The reason is that K, is not Isc in X x {A}.

Example 3.4 ((ii) Cannot be Dropped). Let X = [0, 1], A = [0, 1], K;(x, 1) = K5 (x, ») = [0, 1] and

x—y, ifx=0,
Sy, 2) = { —x, otherwise.
It is clear that assumption (i) is satisfied and S(0) = {1}. Let A, = &, = !, andx, = 0 ¢ S(A,,, &n). Then {x,} is an

approximating sequence for (QEP) corresponding to {A,}. But {x,} — 0 ¢ S(O) and hence {(QEPA) A € A} is not well-
posed at A = 0. The reason is that assumption (ii) is violated. Indeed, taking x, = 0, y, = 1, A, = ; and e, = 0, we have

{(n, Yn, Any €0)} — (0,1,0,0) and f(Xq, Yo, An) + &, = (0,1, 1) = 1> 0butf(0,1,0) = —~1 < 0.

Remark 3.2. In the special case where K(x, 1) = X, it is not hard to check that the assumption (ii) for f can be reduced
to the same condition for f(., y, .), for all y € X. Therefore, Theorem 3.1 improves Theorem 3.3 in [25]. Indeed, it suffices
to check assumption (ii) of Theorem 3.1 from the (assumed in [25}) monotonicity of f(., ., ) and lower semicontinuity of
£, . )0 {(X, An)} — (%, &) and {e.} tends to O are such that

[y, )\n) +&, >0,
then, by the monotonicity, the inequalities
fy,x A) < lim inff(y, x5, ) < iminf(—f(x,, y, Ap)) < liminfe, =0
imply that f(x,y, A) > 0. Note further that we omit the hemicontinuity of f(., ., ) and convexity of f(x, ., ) imposed
in [25].
Theorem 3.2. Let X and A be metric spaces.

(i) If (QEP) is uniquely well-posed at A, then diam IT(X, £, €) — 0% as (£, €) — (0F, 0F).
(ii) Conversely, if X is complete and the following conditions hold
(a) Ky isclosed and K, is Iscin X x {A};
(b) f is upper 0-level closed w.r.t. id in K1 (X, 1) x K3(X, &) x {1} x {0},
then (QEP) is uniquely well-posed at X, provided that diam IT(X, ¢, £) — 0t as (¢, €) — (O, 0F).

Proof. (i) Suppose (QEP) is uniquely well-posed at &, but there is {(,, 1)} — (0%, 0%) such that there are ny € W (the set
of natural numbers) and r > 0 such that, for all n > ny,

diam IT(x, &y, €,) > 7.

Then, there exist x,,, e 2 e [1(x, Ln, &) such that d(x,,, n) > L Consequently, there are }\,1, }\ﬁ S B(X, Zn) such that
Sy A+, >0, VyeK(x,ah

and

fOE,y A2 +e, >0, VyeK(@2 A2,
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Proof. Let y be the Hausdorff measure 7 (for the Kuratowski measure case the argument is similar).
(i) Assume that (QEP) is well-posed at A and (¢, €) — (0%, 0%). Since S(A) C IT(X, ¢, ¢) forall ¢, ¢ > 0,

H(T(R, ¢, ), S(N) = H*IT(X, ¢, €), S(A)),

where H* (A, B) = sup,e4 d(a, B) and d(a, B) = infycp d(a, b).Let {x,} be any sequence in S(X) Since {x,} is an approximating
sequence for (QEP), there is a subsequence convergent to some point of S(1). Hence, S(A) is compact.
IfS()) C Uk_ B(z, €), then

Tz, e)C UB (2 e +H (M, ¢, ), 5()))

k=1
and hence
n(T(A, ¢, &) <H (IT(X, £, 8). S(R) + y(S()) .
Since S(1) is compact, n(S(1)) = 0. So we have
nUT(A, £, €)) < HUT(A. L, €), S(A)).

Now we claim that H(IT(&, ¢, ), S(A)) — 0% as (£, ) — (0%, 0%). Indeed, suppose to the contrary that there are p > 0,
{(Cn, €0)} = (07,0%) and x, € IT(A, gy, &) such that, foralln € W, d(xy, S(A)) > p. Since {x,} is an approximating
sequence for (QEP), there is a subsequence convergent to some point of S(1), a contradiction.

(ii) Assume that n(IT(%, ¢, €)) — 0% as (¢, &) — (0%, 0F). We first prove that I7(A, ¢, ¢) is closed for all positive ¢ and
e Lletx, € IT(A, ¢, €) be such that {x,} — x. Then, for eachn € W, there is A, € B(A, ¢) such that, forally € K,(x,, An),

f(xnvyv ln) +6 2 0-
Since B(i, ¢) is compact, we can assume that {A,} — A for some A € B(A, [). By the closedness of Ky at (x, A), x € Ky(x, A).
We claim that, forall y € K, (x, A),

fxy, M) +e=>0.

Indeed, if there exists y € K(x, 1) such that f(x,y, 1) + ¢ < 0, there isy, € Ky(x,, A,) such that {y,} — yas K, islsc
at (x, A). By the upper —¢-level closedness of f at (x, y, 1), there is ng € W such that, for all n > ng, f(X,, Yo, An) < —€,a
contradiction. Since A € B(A {).wehavex € IT(., ¢, €). Hence, T (A, ¢, e) is closed.

Now we show that S(k) ﬂpo 650 x, ¢, £). We first check that ﬂpo Tt e) = S(A €). Indeed, it is easy to see

thatﬂpo I, z,6) 2 S(A €).Letx e ﬂ;>o m(x, ¢,¢€).Thereis A, € B(X, ¢)such that, forally € Kz(x An), f (X, Y, An) +

€ > 0.Since x € Ky(x, Ap), {Ay} — A and K is closed, one sees that x € K; (x, X). Now we verify thatx € S(A ¢).Indeed, for
eachy € K, (x, 1), since K; is Isc at (x, X), there exists Yn € Ka(x, Ap) with {y,} — y.Sincex € S(4,, €),

fX,yn, Xn) +€>0.
By the upper —e-level closedness of f, one has
fxy, M) +e=>0,

ie. m;>0 MT(x, ¢,€) S S(X, e). Hence, Mo T T 6) = S(, €). Next, we have S() = N
oG, g.e).

Since n(IT(A, ¢, €)) — 0% as (¢, ) — (0%, 0%), the regular measure properties of 77 imply that S() is compact and
H(T(A, ¢, €),S(A)) = 0% as (¢, &) — (0F, 0%).

Let x, be an approximating sequence for (QEP) corresponding to {A,), where {%,} — A.There is {en} — 07 such that,
forally € K3(xn, Ap) and alln € W,

f(Xn,,V, An) €, > 0.

This means that x, € IT(X, £,, £,) with ¢, := d(X, A,). We see that

d(Xn, S(A)) < HUT(, Ly, £3), S(R)) — 0%,

£>OS()_“€) = ﬂ(>0,£>0

Hence, there is X, € S(A) such that d(x,, Xp,) — 0asn — oo. By the compactness of S(1), there is a subsequence {xy, } of
{xn) convergent to some point X of S(1). Therefore, the corresponding subsequence {x;, } of {x,) tends to X. Hence, (QEP) is
well-posed at A. [

The following examples show that the assumptions of Theorem 3.3(ii) are essential.

Example 3.6 (The Closedness of Ky cannot be Dispensed). Let X = R, A = [0, 1], Ky(x, 1) = (—=A, 1], Kx(x, )) = [0, 1],
fxy. ) =x(x—y)and X = 0.1tis easy to see that X is complete, A is compact, K is Isc in X x A. Condition (ii) b) holds
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Now suppose ad absurdum that g(y, ) < g(x, A). By Lemma 2.1 we have
limsup g(yn, Ap) < iminfg(x,, An).
Hence, there are t;, t; € Rand ng € & such that, for n > ny,
EWn, An) <t <ty < g(Xn, Ap)
and then
EWn An) —g(n, An) <1 — 2 <0,
which is impossible and we are done. O
Letm : X x A — R be the following kind of marginal functions
m(x, ) .= inf{g(y, X)) |y € K(x, 1)}.
When (QOP) is given on metric spaces, similarly as for (QEP) we define S and 17 as follows
S(he) = {x € KX, A) | g, 1) < m(x, ) + &},
na.c.o= |J sa.e.

A€B(AL)

Theorem 4.2. Assume that

(i) X is compact and K is closed in X x {A};
(ii) g is lower pseudocontinuous in K(X, A) x {A};
(iii) misuscin K(X, ) x {A}.

Then (QOP) is well-posed at . Furthermore, if (QOP) has a unique solution, it is uniquely well-posed at X

Proof. We check first that S is usc at (&, 0). Suppose to the contrary the existence of an open superset U of S(A, 0) such that
for all {(A,, €,)} convergent to (A,0%) in A x Ry, there is x, € S(An, &n) such that x, ¢ U, for all n. By the compactness
of X one can assume that {x,} tends to some Xp. Since K is closed at (xo, A), X0 € K(xg, ). If Xo & S(X, 0) = S(A), there is
Yo € K(xo, A) such that g(yp, A) < g(xp, A). Since g is lower pseudocontinuous at (xo, A), we have

m(xo, ) < 8o, A) < liminfg(x,, Ay).
The upper semicontinuity of m at (xo, 1) yields some t € R such that
limsup m(x,, Ap) < t < liminfg(x,, Ay).
Hence, there is ng € W such that, for alln > n,,
Mg, Ap) — g(Xn, Ap) < t — g(Xn, An).
Asxp € §(A,., &n),
—&n < mMXp, Ap) — 8(Xy, An) < 0.
Therefore,
0= nﬂrfm[m(xn. An) —g(XnAn)] <t — Li_rpj&fg(xn. An) <0.
This contradiction shows that xo € S(1). Then another contradiction is obtained as x, & U. Thus.s is usc at (A, 0). Now we

prove that S(1) is compact by checking its closedness. Let {x,} < S(X) converge to xo. As S(1) C S(X, &,), by the preceding
argument one sees that xo € S(A). By Remark 3.1, (QOP) is well-posed at .. O

The following examples explain that Theorems 4.1 and 4.2 are incomparable and each of them may be applicable in
different situations.

Example 4.1. LetX = A = [0, 1], K(x.A) = [0, 1], X = 1 and

A+x(1-=2), ifo0<Ar <1,
-1,

g M) = ifA=1.

Itis clear that K is continuous, X is compact and g is lower pseudocontinuous in [0, 1] x [0, 1]. Now we check that g is upper
pseudocontinuous at (x, 1), for all x € [0, 1]. Indeed, assume thatg(y, 1) > g(x, 1) = —1and {(xs, An)} — (%, 1).Itis clear
that,g(y,A) > 0as A < 1andlim SUPp_s 400 8(Xn, Ap) = 0.S0g(y, A) > lim SUP,_, + 00 & (Xn, An). Hence, the assumptions of
Theorem 4.1 are satisfied and we obtain the well-posedness at 1 (in fact, S(1) = [0, 1] and S(A) = {0} forall0 < A < 1).
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(ii) Conversely, assume that X is complete and A is compact or finite dimensional. Impose further that,
(a) Kisclosedin X x A;
(b) gisiscinK(X, A) x A;
(c) misuscin K(X, A) x A.
Then (QOP) is well-posed at A, provided that y (IT(x, £, €)) — 0% as (¢, &) — (0F, O1).

Proof. By similarity we discuss only the case where y = p, the Kuratowski measure._
(i) Assume that (QOP) is well-posed at A. Since, for all positive ¢ and g, S(A) € IT(X, ¢, €), one has

HUT(X, ¢, €),S(A)) = H*(IT(X, ¢, £), S()).

Let {x,} be a sequence in S (1).Then {x,} is an approximating sequence for (QOP) and has a subsequence convergent to some
point of § (A) Hence, S(X) is compact.
Let S(A) C Uk M withdiamM, < g, fork=1,...,n. Set

Ne={z € X | d(z, M) < HIT(X, £, 6), S(A))).
We claim that
nG.¢.e) <N
k=1

Indeed, let x € IT(}, £, €). Thend(x, S(A)) < HUT(A, £, €), S(})). Since S(A) C Uk 1 My, we see that d(x, Uk_ M) <
HUT(, ¢, €), S(A)). Hence, there is k such that d(x, Mp) < HTI, ¢, ¢), S(A)) i.e.x € N;. So, Ik, t,e) € Uk_ Ni. Note
further that

diam N = diam M + 2H (IT(X, ¢, £), S(V)) < & + 2H ([T(X, £, €),S(V)),
and hence, as u(S(1)) = 0,
HUTA, £, €)) < 2H (X, ¢, €), SV)) + u(S(A)) = 2H(IT(X, ¢, €), S(A)).

Now we prove that H(/T(%, ¢, £),S(2)) — 0t as(¢,e) — (0F,0%). Suppose to the contrary that there are p >
0, {(Lny €n)} — (01, 0%)and x, € IT(A, &n, €,) such that, foralln e N, d(x,;, S(X)) = p. Since {x,} is an approximating
sequence for (QOP), it has a subsequence convergent to some point of § (A) a contradiction. Therefore, u(JT(A, ¢, €)) — O
as (¢, &) — (0%, 01). .

(ii) Assume that w(IT(%, ¢, €)) — 0% as (¢, &) — (0%, 0F). We first show that JT(A, ¢, ¢) is closed for all positive ¢ and
€. letx, € IT(A, ¢, ) and {x,} — x. Then, for each n € &, there is A, € B(A, ¢) such that

g(Xn, An) < m(Xn, Ap) + €.

Because B(X, ¢) is compact, we assume that {An} = A for some A € B(A, ¢). Since K is closed at (x, 1), x € K(x, L). By the
lower semicontinuity of g and the upper semicontinuity of m at (x, A), we have

g(x,A) <m(x, ) + &.

As A € B(k,r) we have x € (X, ¢, &). Hence, IT(X, ¢, €) is closed. Note further that S(A) = ﬂpo £0 (%, ¢, €) and
w(IT (X, £,€)) = 0T as (¢, €) — (0%, 0F). From the properties of y it follows that S() is compact and HUT(, z,£),5()
— 0%, Let {x,} be an approximating sequence for (QOP) corresponding to {A,}, where {x,} — A.There is {¢,} — 0% such
that, foralln € W,

g(Xn, Ap) < m(Xy, Ap) + 4.
Consequently, x, € IT(X, Ln, €2) With £y = d(A, A,). We see that
d(%p, S(X)) < HUIT(X, Zn, €0), S(A)) — 0OF.

By the compactness of S (), there is a subsequence of {x,) converging to some point of S(1). Hence, (QOP) is well-posed
atix. 0O

Theorem 4.5. Assume that X is complete and A is compact or finite dimensional. Let the following conditions hold

(a) Kisclosedand Iscin X x A;
(b) g is continuous in K(X, A) x A.

Then (QOP) is well-posed at A, provided that y (IT(X, ¢, €)) — 0t as (¢, &) — (0%, O%).



L.Q Anh et al. / Computers and Mathematics with Applications 62 (2011) 2045-2057 2057

[22] M.B. Lignola, ]. Morgan, a-well-posedness for Nash equilibria and for optimization problems with Nash equilibrium constraints, J. Global Optim. 36
(2006) 439-459.

[23] M. Margiocco, F. Patrone, L. Pusillo Chicco, A new approach to Tikhonov well-posedness for Nash equilibria, Optim. 40 (1997) 385-400.

{24] B.Lemaire, C. Ould Ahmed Salem, ].P. Revalski, Well-posedness by perturbations of variational problems, J. Optim. Theory Appl. 115 (2002) 345-368.

[25] Y.P. Fang, R. Hu, N.J. Huang, Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints, Comput. Math.
Appl. 55 (2008) 89-100.

[26] ). Morgan, V. Scalzo, Pseudocontinuity in optimization and nonzero sum games, J. Optim, Theory Appl. 120 (2004) 181-197.

[27] L.Q Anh, P.Q Khanh, Semicontinuity of the solution sets of parametric multivalued vector quasiequilibrium problems, J. Math. Anal. Appl. 294 (2004)
699-711.

|28] L.Q. Anh, P.Q, Khanh, On the stability of the solution sets of general multivalued vector quasiequilibrium problems, J. Optim. Theory Appl. 135 (2007)
271-284.

|29] L.Q Anh, P.Q, Khanh, Various kinds of semicontinuity and the solutions sets of parametric multivalued symmetric vector quasiequilibrium problems,
J. Global Optim. 41 (2008) 539-558.

[30] L.Q Anh, P.Q, Khanh, Semicontinuity of the approximate solution sets of multi-valued quasiequilibrium problems, Numer. Funct. Anal. Optim. 29
(2008) 24-42.

[31] ). Danes, On the Istratescu measure of noncompactness, Bull. Math. Soc. R. S. Roumnanie 16 (1972) 403-406.

[32] J. Banas, K. Goebel, Measures of Noncompactness in Banach Spaces, in: Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, New
York, Basel, 1980.

[33] V. Rakocgvic, Measures of noncompactness and some applications, Filomat 12 (1998) 87-120.



